Microbox 2K2 User Guide Version 0.95 10th May 2023

M1icrobox 2K2
User Guide

Page 1

Microbox 2K2 User Guide Version 0.95 10th May 2023

+++ Mon09 Ver 6.0 D.A.Rumball 2020 +++
Booting internal FLEX....
6809 FLEX V3.01

15:20:19 Wednesday 4th March 2020
SYSTEM DRIVE IS #0

WORK DRIVE IS #1

Microbox][auto setup of ASN and TTYSET.
+++

+++allocate

Drive 0 is the PROMdisk

Drive 1 is the RAMdisk

Drive 2 is FlexNet

Drive 3 is unassigned

+++

Page 2

Microbox 2K2 User Guide Version 0.95 10th May 2023

CONTENTS
Introduction.............ccvvuein... Section 1
Hardware.........covuiiinnennnnnn. Section 2
Firmware.cooeiiiiinninnnennnnn. Section 3
Customisation...........ccvvuvvnnonn. Section 4
MON@9 commands...........ccvveennn... Section 5
FLEX/0S-9 utilities............c...... Section 6
Programming guide.................... Section 7
Terminal emulator control codes..... Appendix 1
Flexlink & Monlink source........... Appendix 2
PS/2 keyboard mapping............... Appendix 3
Graphics display codes.............. Appendix 4
Default display character set....... Appendix 5
Promdisk contents................... Appendix ©
Schematics........coovviiiiiinnnennn. Appendix 7
PCB plots...cvveiiiiiii it Appendix 8
Assembly drawings................... Appendix 9
3D renderings.........oiiiiiiinn... Appendix 10
BOM. .. i e e Appendix 11

Acknowledgements

I'd 1like to acknowledge and say thank you to all those in the FLEX
User's Group who have been preserving and documenting these early 6809 FLEX
based systems and especially Michael Evenson for the NetPC/FLEXNet protocols
and utilities used in the development of the MB2K2 and Hermann Seib for the
A@9 assembler.

D.A.Rumball - Hinxworth, UK - April 2020

The project is covered under the permissive version of the CERN Open
Hardware Licence Version 2 a copy of which is part of the package.

"If I have seen further, it is by standing on the shoulders of giants.”
- Isaac Newton

"We in computer software insist on stepping on the toes of those who came
before us instead of climbing on their shoulders".
- Dan Ingalls

“Myopia is still a problem even where there are giants' shoulders to stand

on”
- Alan C. Kay

Page 3

Microbox 2K2 User Guide Version 0.95 10th May 2023

Page 4

Microbox 2K2 User Guide Version 0.95 10th May 2023

Section 1 Introduction

A long time ago in a galaxy really quite close by I designed a single
board computer called the Microbox 2 (MB2) which was based around the 6809
and FLEX 0S. It had a number of advanced (for 1982) features such as
integrated EPROMdisk and RAMdisk, hi-res hardware accelerated graphics with
a bitmapped text display that could use different languages and character
sets (even Arabic), and a battery backed RTC and PRAM. As it had FLEX
compatible drivers in EPROM, it could boot from any configured or un-
configured copy of FLEX. It sold quite well, (I believe a few hundred were
shipped worldwide), and launched my design career.

Not quite so long ago (2005), I revisited the MB2 design with a
version built around a Xilinx ‘Spartan’ FPGA dev kit and although this
worked well I wasn’t happy with the design as it only kept to the spirit of
the MB2 and couldn’t run much of the original’s software. Also due to a lack
of space in the FPGA it wasn’t possible to emulate the uPD7220A Graphics
Display Controller (GDC) which was one of the defining features of the MB2.

Recent events have given me time to look once again at an updated
version of the MBZ2 and the Microbox 2020 (MB2K2) is the result. This time
there is a combination of custom hardware and software that aims be a
complete emulation of the MB2 to the point of running the original’s
software without modifications.

The MB2K2 is a hardware based emulator built around an Xmos XU216 SoC
where each of the 16 RISC cores in the XU216 map onto one of the individual
LSI chips in the system being emulated, CPU, PIA, ACIA, GDC etc. The XU216
has 512KB of internal RAM and boots from an external QSPI serial flash
device that holds the Xmos firmware and the promdisk for the 6809. As well
as the XU216 the PCB includes a battery backed RTC, LEDs and DIP switches,
VGA based video out, PS/2 keyboard interface and a USB connector for power
and dual high speed serial ports which appear as CDC class virtual com ports
to a Windows, MacOS or Linux based host computer.

The PCB has an abundance of test points and features to aid firmware
development and is designed with an eye to easy manual assembly.

The MB2K2 is highly customisable. Xmos supply a free Eclipse toolchain
that includes an IDE, compilers and debuggers that work with a low cost USB
to JTAG debug interface allowing the user to change the MB2K2’s firmware.
Although initially the MB2KZ2 has been used to emulate the MB2, there’s
nothing to stop the emulation of other systems, processors and LSI devices.

The initial firmware release supports:-

® MC6809 processor emulation running at approx 8MHz equiv

® 64KB of 6809 RAM with MON@9 and 0S-9 L1 in ‘ROM'

® 200KB ramdisk + 128KB non-volatile ramdisk & 3MB promdisk

e WD2123 DUART emulation with twin serial ports to the host computer as VCPs
via USB, one can be used with FLEXNet for remote storage on FLEX and 0S-9

® MC146818 RTC emulation via a physical battery backed RTC/PRAM on the PCB

® MCo6821 PIA emulation for the MB2’s bell and option switches and PS/2
keyboard interface (replaces the MB2’s parallel keyboard

® uPD7220A hardware graphics accelerator emulation, 768x576 ‘VGA’

® PS/2 keyboard interface

® 30x80mm double sided 4 layer PCB which is designed to be assembled by hand
with few fine pitch components and ‘large’ (@805) discrete throughout etc.

Page 5

Microbox 2K2 User Guide Version 0.95 10th May 2023

Changelist

Ver 0.90 - 2020-04-30 - Initial pre-release.

Ver 0.91 - 2020-07-30 - Add changes for 0S-9 support.
Ver 0.95 - 2023-05-10 - PCB converted to KiCAD, add F-RAM based RAMdisk.

Known TIssues

Todo List

This early release of the MB2KZ2 firmware is fully functional and runs
the MB2 graphics demo software, but there are some unfinished parts and in
later releases I hope to :-

® Improve the uPD7220A emulation for greater compatibility with MB2

software.
e Implement the WD1770 floppy disk controller

Page 6

Microbox 2K2 User Guide Version 0.95 10th May 2023

Section 2 - Hardware notes

J1
P |
| @ VGA
@vs o
PS/2 @Hs I\
15 @ PIX
| |SCE o
4 I M bo
R13 R8 5 R43
c5 L1 | JGND xRST®
£_Hur R45
o - =
vz, . .1\70 o C31 R15
g 2 . R16,
" R4 RS I Ra6 S %0035
2@ US iy ©xod34
24MHz Dirmms @X1D01 O

e
| CLK@ @DATA
O e VBUS® i° a1 B

C32

[T
7" (=)
i
(&)

ACIAO BOOT. «
ACIAL SELECT ¢
PROMDISK OUTPUT ¢
RAMDISK INPUT

e e e

TR3{“
A

PIA_PBO w1
ST 6809 RESET

} ~j c15
PIAPB2 “Raniware' R38 n SW2 1

1zl iz =
e

CR1216,/20/25
MB2K2 V1B

D Rumball 2023

Like the original Microbox 2, the MB2K2 is based around a single PCB
that carries the circuitry for the entire system. As well as the Xmos SoC
the PCB includes :-
® 1V and 3.3V power supplies
Power sequencing and reset circuity
24MHz system clock from which all timing is derived
8M bit QSPI flash device for firmware and PROMdisk
Buffering for the VGA, floppy disk and PS/2 interfaces
Battery backed RTC including persistent RAM/EEPROM
4 way DIP switch used for MON@9 settings
LEDs that show drive and serial port activity
Sounder
‘Soft’ reset switch for the emulated processor
Connectors for JTAG debug, USB, PS/2 keyboard, Floppy disk and VGA
Multiple test points and test connectors for ease of development

Page 7

Microbox 2K2 User Guide Version 0.95 10th May 2023

A few concessions to the 21st century have been made due to the
scarcity of monitors supporting analogue video, host computers with RS-232
serial ports and parallel 5V logic level keyboards. So the 15KHz interlaced
video out of the MBZ2 has been replaced by a VGA compatible output, the
serial ports are now CDC class virtual com ports via USB and the keyboard
interface supports the ubiquitous PS/2 standard.

Page 8

Microbox 2K2 User Guide Version 0.95 10th May 2023

2.2 - XU216 SoC

/

XODxx XTIME PLL XTIME X1Dxx
1/O pins scheduler scheduler 1/0 pins

Hardware response ports | | JTAG || Hardware response ports

| — — |
xCORE logical core |- xCORE logical core

XxCORE logical core xCORE logical core

xCORE logical core xCORE logical core

xCORE logical core xCORE logical core

XCORE logical core

xCORE logical core xCORE logical core

xCONNECT Switch

XxCORE logical core xCORE logical core

T T T T T T T

xCORE logical core xCORE logical core

i ’_O'I.'P_‘ SRAM

I
"
I
xCORE logical core |-
I
I
"
|

uss][sram | [ote] ||

m Link 8

I
|
|
|
|
|
|
\ P

The MB2K2 is based around an XU216-512 SoC from Xmos (part of the
XCORE200 series) which has all of the processing and RAM required for the
emulated system. Unlike conventional microcontrollers the XU216 runs
multiple realtime tasks simultaneously and communicates between these tasks
using an internal high speed network. xCORE microcontrollers are completely
deterministic, so it’s possible to code in software hard realtime functions
that traditionally require dedicated hardware such as USB or video
interfaces.

Key features of the XU216-512-TQ128 include:-

® Two tiles containing 8 32-bit 125MHz RISC cores with highly integrated 1/0
and on-chip memory

® A hardware based scheduler which performs functions similar to an RTOS. It
services and synchronises events in a core and triggers cores on events
generated by hardware resources such as the I/0 pins, communication
channels and timers. Once triggered, a core runs independently and
concurrently to the other cores.

® Channels and channel ends allowing tasks running on cores to communicate
using channels formed between two channel ends.

® A switch and links between tiles allowing channel communications to be
routed. One channel travels off chip to the XTAG connector allowing real
time debugging of running tasks.

e T1/0 pins connected to the processing cores by hardware response ports. The
port logic can drive pins or sample the value on a pin optionally waiting
for a particular condition.

® A set of programmable clock blocks that can be used to govern the rate at
which ports execute.

® Each tile integrates a bank of SRAM for instructions and data, and a block
of one-time programmable (OTP) memory that can be configured for system
wide security features.

® A PLL used to create the core’s processor clock given a low frequency
external oscillator.

® A USB PHY providing High-Speed and Full-Speed, device, host, and on-the-
go functionality.

Page 9

Microbox 2K2 User Guide

Version 0.95 10th May 2023

» w
ey 1VO out
L] L
N 3V3 pc RESET Tl T
ouT SUPERVISOR - | == L
[a) o o a
o o o z
> > > 0
I~ <\ <I
3 o
o o
RST_N
TRST_N |
OSCILLATOR —
24 MHz CLK —
XnDnn [— GPIO
OTP_VCC |
H— xCORE200 —
|_| — VDDIOT —
L| VDDIOL
VDDIOR w
Hb— 5 4
= ~—<tINONO E g 5 E o
UsB.VDD33 233335 o o
L| h_ occeeee v ununuuu z
= XXX XXX S5 5555 [©]
C T E 10 F
QSPI FLASH = USB

The MB2K2 is a simple implementation

of the standard Xmos reference

design for the XU216 only adding an external battery backed RTC, buffering
or level shifting where necessary for the external ports together with

option switches and indicator LEDs.

2.2 - Power

3Vv3

VBUS Ul 3v3
VIN VOUT

GND
3 4

4u7 EN BYP 2u2 =
_—l— 4u7
SP6205SEMS-L-3.3 C8
10n

1|
11
Q
a
1|
1
Q
R

3v3 1o

U2
VIN.SW SW

VIN_A VO/VFB

VINH GND %
Thermal Pad
ST1S06PUR

—— 500mA at 3.3V —

VOUT=0.8x(1+4.7/17.8)=1.011V
AUX_3V3 -->1V0 --> IXRST

The MB2K2 is powered entirely via the USB connector and requires a
notional 5V supply at a maximum of 25@mA (approx 15@0mA nominal). The 5V
supply powers the VGA video buffer and is passed to the PS/2 connector for
the external keyboard. Two further power rails are derived from the 5V

supply, 3.3V (via a linear regulator) which
VDD for the QSPI flash, FDC buffers and the
buck regulator) which is used for the XU216
enabled by the 3.3V rail thus ensuring that

is used for I/0 on the XU216,
RTC and 1.0V (via a switch mode
core logic. The 1V rail is

the correct power sequence of

3.3V rising before 1V that is required by the XU216 is followed.

2.3 - Reset

Page 10

Microbox 2K2 User Guide Version 0.95 10th May 2023

10 Us

INPUT RST_OUT

& NC

31 GND CD L_L
NCP303LSN09 C16 U7B
In

The Xu2l6 is reset on power up by a NCP3@3 series voltage detector
which releases reset when the 1V rail has stabilised. A separate tact switch
at the edge of the P(CB is connected to the XU216 I/0 and can be used as a
‘soft’ reset for the emulated processor.

2.4 - Clocks

X2
4 1 e
C32 VDD-||]|_
T R49
100n 2 GND OUT 3 CLK 24M
24MHz 28
= SYSCLOCK O

All the clocks used in the MB2K2 (with the exception of the 32,768 Hz
RTC clock) are derived from a single 24 MHz clock oscillator. Internally to
the XU216 this 24 MHz clock is multiplied by a PLL to 48 MHz for the USB
PHY, 125 MHz for the core logic and 31.25 MHz for the VGA pixel clock.

2.5 - Boot Flash

3

%)

1/0 TILE 0 R7 ﬁ
1A XOD0O g(; PS2 _DATA TS 3K0
-18 X0DO1
BOOT FLASH
--4A0 8A0 16A0 X0D02 <»>§gﬁ< 80 S
—4A18A1 16A1 X0DO3 <N>ﬁ 5 8
--4B0 8A2 16A2 X0D04 33 5 100 Vee T
--4B18A3 16A3 X0DO05 37 3 101 CE.n 3 1 _C10
--4B2 8A4 16A4 X0DO06 5 102 SCK 7 TIOOH
--4B3 8A5 16A5 X0DO07 39 | 103 GND
—4A28A6 16A6 X0DO8 W —T—:
- 4A38A7 16A7 XOD09 = GND
_1c XOD10 <N/%§ — QSPI_CLK

An 8-32 Mbit QSPI flash device is used to store the firmware for the
XU216 and optionally in a separate data portion the PROMdisk for the
emulated processor. This flash device is initially programmed by the Xmos
toolchain via an ‘XTAG’ debug interface plugged into the PCB but may

Page 11

Microbox 2K2 User Guide Version 0.95 10th May 2023

subsequently be read and written to programmatically by the running
firmware.

2.6 - Optiondl seridal ports (‘FTDI’)

]

S FTDI RX0
4 FTDI TX0
3

| w9000

613

|

FTDI RX1
FTDI_TXI1

OS] ES (78

o

[moo00]’

61300511121 —

'FTDI' SERIAL PORTS

The MB2K2 design has connectors for two optional 3V logic level serial
ports that are designed to connect to USB/serial cables such as the FTDI
TTL-232R-3V3. Note that only Tx/Rx and GND are connected and care should be
taken to ensure that any adapter cable uses 3V logic levels to avoid damage
to the MB2K2.

2.7 - VGA interface

R52-54 ARE OPTIONAL —

The VGA pixel and timing logic is contained purely in the XU216 and so
only a simple buffer is required to drive the VGA 75Q RGB and sync lines.
Each output has a series current limiting R and an option termination R
which is not required in most situations. The monochrome pixel output drives
the R,G, and B lines equally for a White on Black display however removing
one or more of the 0Q links will allow other colours to be chosen such as
Yellow or Green for a ‘retro’ phosphor CRT display look. :-)

Page 12

Microbox 2K2 User Guide Version 0.95 10th May 2023

2.8 - PS/2 keyboard interface

3v3 VBUS

2113
TSM2302CX

PS2 CLK

PS2_CLK

To replace the ‘hard to obtain’ parallel TTL keyboard of the MB2 the
MB2K2 has an interface compatible with most PS/2 PC style standard
keyboards. There are a pair of bi directional level shifters used to convert
the 5V logic levels of the keyboard to the 3V logic levels of the XU216.

2.9 - Redal Time Clock

av3

100K U6 MCP79410-I/SN

MFP vCC
SCL
SDA
VBAT VSS

L C9
[~ 100n

(981 (1 [= BN

Pu P

IS
<

=
C35
~ —
— X1
32.768kHz |:|
C11 C12

4p7 T T4p7
= RTC/PRAM

The one significant piece of logic which cannot fit into the XU216 due
to standby power concerns is the real time clock (RTC). This is implemented
on the MB2K2 using a common MCP7941@ variant from Microchip. This device
includes a low power 64 byte SRAM and a 128 byte EEPROM that retains data
even when the battery is disconnected. Timing for the RTC is provided by an
internal oscillator driving a 32,768Hz crystal.The RTC is powered by either
the 3.3V supply during operation or a PCB mounted 3V Lithium coin cell when
the USB power is disconnected. The coin cell holder will accept either a
CR1261, CR1220 or (CR1225 cell. During standby the RTC clock keeps time and
the contents of the SRAM are preserved.

As in the MB2, the RTC is used to automatically set the 0S date (both
for FLEX and 0S-9) and the SRAM stores system parameters such as the
allocation of logical to physical drive types and FLEX’s ASN and TTYSET
values. The MFP output of the RTC can used for calibration of the crystal
oscillator for more accurate timekeeping.

Page 13

Microbox 2K2 User Guide Version 0.95 10th May 2023

2.10 - Floppy disk interface

3Vv3

RI5 R16
R19 R20
S E R
U7F
R 12 OB rero oA |
uU7D
1200 E /QI 2 TRACKO0 |
\I
u7C
IE o /QI 3 INDEX
\I
U7E
WPRT 410 /QI il WRITE_PROTECT
\I
S :
usc
o) 3 'Q\ 4 WRITE DATA
e
UgB
DIRC 13X 12 [SRECTON
USF
WG 1 'Q\ 2 WRITE_GATE>
el
USA
He > ToToRoN >
USE
SIDE] 'Q\ 5 SIDE_SELECT
e
U8D R37
[+—{ oRwE >
OR

The MB2K2 supports the connection of a single 3/12” floppy drive with
a standard 34 way .1” header and a pin out that matches the MB2. Simple open
collector buffers are used that allow translation between the 3V logic
levels of the XU216 and 5V logic levels of the floppy drive.

Note that the floppy disk interface emulation (WD1770) of the MB2K2 is not
yvet complete and will be included in a later release.

2.11 - USB interface

48

10K U3E
YBUS % | UsB VBUS
.
USB DN 47

USB D N USB_DM
USB D _P ussboP 46} jsppp A

= by = UsB.ID =)

ARONIS

£ o'oY PRIRSVOURMSLY o pryng

R50 XU216-512-TQ128-C20
43R

As the XU216 contains the USB PHY and all support logic, the USB
interface hardware of the MB2KZ2 consists only of ESD protection.

Page 14

Microbox 2K2 User Guide Version 0.95 10th May 2023

2.12 - Connector, switches and LED locations

USB PS/Z VGA

4 2 | Ji\
FTDi O O OODOOOOOOOOOOOO O
on oo
:O O . Le PS/2gVS :IIIIIIIHH gl
. - HS - -
o S am orx IIINIZE| 00
VBUS@ T ariaeisg Us 5
oo & Eop nen 1 sCL 'D: _ U7 gy OO
D e Tl | spa == == 2 9@
CN1 Rg RB 11 GND /;»{sngz-l:]- 7 00
LA ‘@ 121 == =%
gl * L ~ R][et oo F].O
[6) oo e H '1'vuo 2 C31 RISIZE 121 | 88 . ppy
A Olpxo/f ©O || 'H N R_[,QR(" -Gk '|©|] lI IR47 ©X0D35 00 dlSk
ux oloffoo | 1 R ,3um||||||||||||||||||||||||||| Qx| 00
. U'QT(% 00 =le x1001o 00
serial 00 y O 00

AR

(0} f

/

O

D

(o8

-
(a]

B file wf W
por‘ts 8 RX1 (oo} ; 3((\53 £ E 08 \
0|02 9 R - LED
(o) 00 oo
P2 MFP UAIIIIU-HIIH-' 88
DEbug > |((|)|| U?i 28
7 D D " A0 soorfo
JTAG _dl_ of m m AfAL SELE(O MON®9
™ of m'm PomMpisk ouTP
& 8o -:- RAMDISK INPUNO - Option
ofd m m P_PBO i
oA m'm PP_PB1 6809 RESET |[>2
\ — DBIEGA_PBZ *Penivare Hﬁ!wg o \ SWItCheS
RTC Indicator ©809 reset ‘Expansion

backup Power
battery LEDs select

Page 15

Microbox 2K2 User Guide Version 0.95 10th May 2023

2.13 - Test point locations

PS/2 TIz2C VGA

+5V

~—

_Reset

Scope

GND pad spare

XUZ216

Aux = 1/0
serial =
~ (@) oo [LETTTTCERTRTTECEETRI -
I 00
RX/TX i & e MFP ‘ru Sugg.'_.g oo
2o on
(@) TN o L
+5V0
o
D3 m m ACIA SELECT © o = . Lo
D4 -:- PROM\ISK OUTPUT O o =_ .

1D5 m_m RAMDI INPUT O

D6 m'm PIA_PBO
3

D7 m_m PIA_PB1 ¥ LS FID2

D8 m_m PIAPB2 \“hinire" °

ardware

D RumbgAfll 2023

RTC MEP o 24MHz
output 3.

Page 16

Microbox 2K2 User Guide Version 0.95 10th May 2023

Section 3 - Firmware notes

As the MB2K2 hardware is fairly simple and generic, the emulation of
the MB2 or other systems is defined entirely by the firmware running on the
XU216. However the resulting code looks quite different from a ‘pure’ PC
based software emulation and indeed has a hardware like architecture that
looks very different from usual.

The MB2K2 project grew from the thought that the RISC processor cores
and connecting hardware of the xCORE SoCs could map quite elegantly onto the
LSI devices and busses of the MB2 where each core would emulate the internal
operation of each LSI chip of the original and the channels connecting each
core would map onto the address/data busses.

I’d recommend that the reader have a basic understanding of the xCORE
architecture and XC language before reading this section. The firmware
documentation of this release includes copies of the Xmos programming guide
and XTIMEcomposer IDE/toolchain user guide to help with this.

The experienced Xmos developer might wonder why I haven’t used some of
the more modern abstract features of the XC language such as combinable and
distributable processes and interfaces which would potentially make the code
more compact. This was a purely an aesthetic decision on my part as these
higher level abstractions would blur the boundaries between the discrete
mapping mentioned above and I really wanted to keep that.

3.1 - Project structure

The source file structure consists of a number of Xmos lib projects
together with the MB2K2 project folder :-

v 5% > MB2K2 [MB2K2 V1_PCB]
(@ Installed Targets
-1;-," Binaries
[} Includes
C:r > bin
(y boot - boot image and build tools
(% > drivers - drivers for USB CDC class for Windows7
& > mon09 - MON@9 source code and build tools
(% promdisk - promdisk image DSK (used by xFLASH)
v @ > st
&y ACIA - serial port source
&y CPU - 6809 source
iy GDC - uPD7220 source
&y PIA - 6821 and PS/2
&y promdisk - PROMdisk source
Zy RAM - decode/RAM handler source
(3 ramdisk - RAMdisk source
&y RIC - RTC and I2C interface source
& > USB - XUD USB interface source
[x3 main.xc
=5 Makefile
2% mb2k2_v1xn - hardware description file

Page 17

Microbox 2K2 User Guide Version 0.95 10th May 2023

There are two classes of build configurations in the project, ‘usb’
which uses the USB connection for serial connections and ‘ftdi’ which
replaces the USB interface with a pair of buffered UARTs. Each is further
split into ‘debug’ which has optimisation set to -00 and adds support for
the use of debugPrintf() and ‘release’ which has optimisation set to -03 and
removes all debugging support.

The release configs should be used when not debugging as the compiled
code runs 3-5 times faster than the debug configs!

3.2 - Architecture and plumbing

Below is the ‘par’ statement that shows the placement of tasks on the
tiles/cores and the channel connections between them (the ‘plumbing’).

par {

on tile[0]: cpu_execute(c_addrData); / (6 E

on tile[0]: decodeMem(c_addrData, c_acia, c_rtc, // (MC6883)
c_pia, c_ramdisk, c_promdisk,
c_gdc) ;

on tile[0]: rtc(c_rtc);

on tile[0]: pia(c_pia);

on tile[0]: promdisk(c_promdisk);
on tile[0]: gdc(c_disp, c_gdc);
on tile[0]: gdcDisplay(c_disp);

ti c(c_£dc) ; (W

on tile[1]: DasBlinkenLights (p_debug_led);
on tile[1l]: ramdisk(c_ramdisk); // 40t
on tile[1l]: acia(cdc_datal0], cdc_datall]l, c_acia); //

USB interface

on tile[1]: xud(c_ep_out, XUD_EP_COUNT_OUT, c_ep_in, XUD_EP_COUNT_IN, null, XUD SPEED HS, XUD PWR SELF);

1:

on tile[1]: EndpointO(c_ep_out[0], c_ep_in[0]);

on tile[1]: CdcEndpointsHandler (c_ep_in[CDC_NOTIFICATION_EP_NUM1],
c_ep_out [CDC_DATA RX EP_NUM1],
c_ep_in[CDC_DATA_TX_EP_NUM1],
cdc_datal[0]);

on tile[1l]: CdcEndpointsHandler (c_ep_in[CDC_NOTIFICATION_EP_NUM2],
c_ep_out [CDC_DATA_RX_EP_NUM2],

c_ep_in[CDC_DATA_TX_ EP_NUM2],
cdc_data[1l);

The tasks are distributed between the tiles to balance memory usage
and MIPs.

Tile 1 is defined as having the USB interface and this forces XUD,
endpoint® and the two CDC handlers plus the ACIA code to be on that tile as
they share memory via interfaces. This also limits the number of tasks so as
not to starve the hard real time task XUD of MIPs. Since the RAM usage of
tile 1 will be low the RAMdisk task (which uses 200KB of memory) is placed
here also. Finally the ‘blinky’ debug LED task is also placed on tile. Note
that the compiler will warn that more cores than the 1limit of six for a USB
tile are allocated but this is fine as the debug LED task uses minimal RAM/
MIPs.

Tile @ holds the remaining tasks with on core free for the future
floppy disk controller interface emulation. Note that the uPD7220 emulation
is split between two cores, one for the display interface that generates the
hard real time VGA pixel and sync signals and a second for the drawing
engine. These two tasks must be on the same tile as they share access to the
approx 50KB frame buffer between them. The remaining RAM is used by the
decode/mem task (64KB emulated RAM and 4KB shadow RAM) and code space for
the remaining tasks.

The firmware can be customised with the free Xmos ‘xTIMEcomposer’

toolchain. Details on this are contained in the ‘Getting Started’ and
‘Firmware build & flashing’ documents included with this release.

Page 18

Microbox 2K2 User Guide Version 0.95 10th May 2023

3.3 - cpu_execute()

The 6809 code comes from an open source emulation by Arto Salmi, Joze
Fabcic and Brian Dominy. This was chosen more or less at random and most
likely is not the fastest or most compact example. However, it does work!
Note that this is an implementation in ‘C’ rather than ‘XC” and as such
needs to use an external library to support channels and other XC features.
This 1ib is called ‘xcore-c’ and features support for channel and streaming
channels, ports and clock blocks, timers, hardware locks , select and
interrupt events.

The CPU communicates via a channel with the decodeMem task. For a read

transaction, the CPU’s reset switch state is read from bit 31 of the word
and used to reset the CPU if asserted.

3.4 - decodeMem()

The decodeMem task emulates the 6883 ‘SAM’ chip of the MB2 and as
such controls access to the CPU’s 64KB address space. In this implementation
it also decodes addresses from the CPU and handles access to the peripheral
devices such as the PIA and DUART (ACIA) via channels to the tasks emulating
those devices.

A simple transaction protocol is used where the 32 bit word
transferred from the CPU has the address in the low 16 bits, data in the
next 8 bits and a transaction type flag in the upper 8 bits. This flag is
0x00 for a read cycle and OxFF for write. This data is then written to RAM
or if the access is in a peripheral address range, the word is passed to the
peripheral. For a read transaction, the byte read from RAM or the peripheral
device is sent back along the same channel in the lowest 8 bits.

For CPU read transactions, the decodeMem task reads the ‘soft’ CPU
reset switch and if the switch input is low (switch pressed) the task
debounces the input and waits for the switch to be released then sends the
reset to the CPU by setting bit 31 of the returned word.

The CPU memory is reset after power up and two sections are
initialised, the first contains an image of the 0S-9 kernel and boot modules
from $0000-$2FFF and the second contains the MONQ9 ‘eprom’ image from $EQQQ-
$FFFF. This initial data is added to the source by means of a header file.
This file is generated by a batch command that should be run after the MON@9
or 0s9 6809 sources are modified. Details of this procedure may be found in
section 4.

In the same manner as the MB2 a 4KB section of RAM at $EQQ@ may be
remapped from ‘eprom’ to RAM. This area is called the ‘shadow RAM’ and is
mapped in whenever control is passed from MON@9 to FLEX. In the MB2, this
area was used by several programs and FLEX utilities so is emulated in the
MB2K2. A portion of the shadow RAM is initialised after reset in the same
way as the main RAM. In this case a bit mapped character set is placed from
$E400 up and this is used by some versions of the MON@9 ‘GDCOUT’ character
drawing routine. See the GDC description for more details. As for the main
RAM, this initialisation is defined by a header file more details of which
may be found in section 4.

Page 19

Microbox 2K2 User Guide

MB2K2 address map

-- RAM

$0000 - $AFFF ($0000 - $BFFF for FLEX)

-- 0S-9 modules $B00@ - $DDFF

$EQ0O - $EFFF monitor commands (switched out when FLEX running)
$FO0Q - $FFFF monitor subroutines and drivers
Scratch RAM + stack space.

(RAM+384) Start of scratch space.

-- MON@9
$DEQOQ
(RAM+127-16) Top of system stack.

-- I0 space
$FF0O0Q
PIA1
KEYREG EQU $FF00
PIACA EQU $FFO1
SYSREG EQU $FF@2
PIACB EQU $FF@3
DUART
UARTD1 EQU $FF@8
UARTC1 EQU $FFQ9
UARTD2 EQU $FF04
UARTC2 EQU $FF@5
BAUD1 EQU $FFaC
BAUD2 EQU $FF@D
EDC
COMREG EQU $FF10
TRKREG EQU $FF11
SECREG EQU $FF12
DATREG EQU $FF13
GDC
GDCPRM EQU $FF14
GDCCOM EQU $FF15
RTC
RTCADD EQU $FF18
RTCDAT EQU $FF19
RDC (ramdisk controller)
COMREG EQU $FF20
TRKREG EQU $FF21
SECREG EQU $FF22
DATREG EQU $FF23
MODREG EQU $FF24
PDC (promdisk controller)
COMREG EQU $FF30
TRKREG EQU $FF31
SECREG EQU $FF32
DATREG EQU $FF33
MODREG EQU $FF34

Page 20

I/0 base address.

Version 0.95 10th May 2023

Microbox 2K2 User Guide Version 0.95 10th May 2023

FRDC (f-ramdisk controller)
COMREG EQU $FF58
TRKREG EQU $FF59
SECREG EQU $FF5A
DATREG EQU $FF5B
MODREG EQU $FF5C

3.5 - rtcO

The RTC task emulates the 146818 RTC used on the MB2. The code passes
RTC register accesses to an external Microchip MCP7941 series device via a
simple ‘bit banging’ I2C interface. The emulation involves register address
remapping, transposition from binary to BCD formats and spoofing of power
fail detection.

One thing to note is that there is a calibration value defined in the
code which allows adjustment of the RTC frequency as per section 5.2.3 of
the MCP7941X data sheet.

#define CALIBRATION_VALUE 0x7D // + 250 32.768KHz clocks/min

This value should be calculated from the time drift measured over a
period of days for each individual system for increased RTC accuracy.

In the current implementation the RTC process also handles the F-RAM
accesses. This is due to the fact that the F-RAM is connected via I2C and
the RTC process ‘owns’ the GPIO bits used for SCL and SDA.

3.6 - piaQ

The PIA task emulates the 6821 PIA used on the MB2 for keyboard input
on port A and the system register on port B that had the following bit
mappings: -

PIA port B definitions (SYSREG)

bit @ - 3 are outputs

@ - DRV (DRV and /DDEN are used by the floppy disk interface)
1 - /DDEN

2 - MAP bit (maps out bottom 4K of monitor ($E@QQ@-$EFFF) when @)
3 - BELL

bit 4 - 7 are inputs

4 - Initial input port

5 - Initial output port

6 - Select 0S to auto boot

7 - Auto boot 0S

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

The MB2K2 has a 4 way DIP switch to to match the MB2 and the switches
have the following functions:-

Switch @ Sets the auto boot function.
on Auto boot into FLEX or 0S-9 on reset
off = run MON@9 on reset

Switch 1 Selects the 0S to boot into.
on = Auto boot into 0S-9 on reset

Page 21

Microbox 2K2 User Guide Version 0.95 10th May 2023

off = Auto boot into FLEX on reset

Switch 2 Sets the initial output port to be used after reset
on = PORT 1 (serial port @) - USB
off = PORT @ (GDC screen)

Switch 3 Sets the initial input port to be used after reset
on = PORT 1 (serial port @) - USB
off = PORT @ (PS/2 keyboard)

As it is now difficult to obtain parallel TTL keyboards this is
emulated by including a PS/2 compatible keyboard interface in the PIA task.
Keypress messages from the keyboard are mapped to ASCII values by tracking
the key up/key down and shift states and applying these states and the raw
key value to a pre defined look up table. This table is composed of four
sections, one each for shift and shift lock on/off. This mapping is defined
in the keycap header file and this file can be simply edited to change the
key mapping as detailed in section 4. The default mapping is included in
appendix 3 and is defined to be compatible with the ‘CEDRIC’ screen text
editor which is included as part of the standard PROMdisk.

3.7 - promdisk()

The PROMdisk task functionally emulates the EPROMdisk of the MB2 but
doesn’t directly emulate the 8255 PIA in the original design. Instead this
task acts as an interface to the external QSPI flash that is used as the
boot image for the XU216. This flash is split into two partitions, the first
holds one or more boot images and the second holds a combigned disk image
(.DSK) file containing the MB2K2’s system volume for FLEX followed by the
boot volume for 0S-9. Typically for a 4MB flash device the first 1IMB is
dedicated to the XU216 boot images and the remainder for the PROMdisk.

The promdisk image is loaded into the data portion as part of the
firmware flashing process as mentioned in section 4 of this guide and the
separate ‘Firmware build and flashing’ guide.

The format of each PROMdisk defaults to a 192 track single sided/
single density disk of approx 1.44MB.

#define SECTORS_PER_TRACK 30
#define TRACKS_PER_DISK 192
#define BYTES_PER_SECTOR 256
#define PROMDISK_SIZE 1474560

Note that this is not one of the standard FLEX formats and will not be
compatible with certain FLEX diagnostic utilities that require a drive to be
one of a limited number of standard formats.

Other formats may be used for user defined PROMdisks as the firmware
reads the System Information Record (SIR) of the FLEX disk image in flash
and uses this to define the correct offsets into the image. The combigned
FLEX/0S-9 PROMdisk may be any size up to 3MB.

Under FLEX the PROMdisk is by default read only and any attempt to

write to the disk will return an error. However there is a flag in MONQ9’s
memory that can be set to allow writes to the PROMdisk by FLEX and this flag

Page 22

Microbox 2K2 User Guide Version 0.95 10th May 2023

is set by the ‘PDRW’ (Promdisk read/Write) command and reset by
‘PDRO’ (PROMdisk read only). A reset will set the default to read only.

Under 0S-9 the PROMdisk is set to r/w always.
Note that there is no wear levelling and repeated writes (10,000's)

will eventually 'wear out' the part of the flash image containing frequently
written sectors.

3.8 - gdcDisplay()

The GDC emulation consists of two separate tasks, the first
(gdcDisplay()) converts the the graphics and text frame store data to a VGA
compatible serial data stream and sync signals whilst the second interprets
commands from the 6809 and emulates the drawing engine of the 7220A.

The display timings are all derived from the XU216’s 125MHz core logic
clock. This is divided by four to give a pixel clock of 31.25MHz which then
drives the output ports for the pixel data and sync signals.

// outputs are all clocked at pixel rate

// pixel clock = 31.25MHz (1/4 of 125MHz system clock)
configure_clock_rate(pixel_clk, 125, 4);
configure_out_port(p_pix, pixel_clk, @);
configure_out_port(p_hs, pixel_clk, 1);
configure_out_port(p_vs, pixel_clk, 1);
start_clock(pixel_clk);

The ports are configured to accept 32 data writes which are then
buffered and serialised using the pixel clock.

on tile[@] : buffered out port:32 p_pix = XS1_PORT_1M;
on tile[@] : buffered out port:32 p_hs = XS1_PORT_1N;
on tile[@] : out port p_vs = XS1_PORT_10;

In this way it’s possible to run a real time display with a simple
code loop and the hardware task switching inherent in the XU216 architecture
ensures that the timing of the video outputs cannot be disturbed by the
other tasks running on the device.

The code to generate a line of video then is just a few simple
statements :-

Note that the bit order of the 32 bit word needs to be reversed and
the two 16 bit sub words swapped so as to output bits in the correct order
for display.

As per the 7220A two display partitions are supported and the starting
addresses and lengths of these portions are passed to the display task from
the drawing engine task aver a channel which is synchronised to the vertical
blanking intervals so that partition changes do not disturb the display.

Because the VGA output is non interlaced there is no need for the
interlaced/non interlaced display switching on the MB2. Instead the text
display mode simply emulates a ‘repeat field’ display by repeating each scan
line to give the same effect. The repeat field parameter is passed into the

Page 23

Microbox 2K2 User Guide Version 0.95 10th May 2023

artitio

if (lengthPartl != 0) {
h = startPartl;

for(1=0; 1 < lengthPartl; 1++) {

orizontal front porch

p_hs <: OxXFFFFFFFF;
p_pix <: 0x00000000;

orizontal sync
p_hs <: 0x00000000;

p_pix <: 0x00000000;

nhorizontal back porcn
#pragma loop unroll
for (i=0; i<HBP_WORDS; i++) {
p_hs <: OxXFFFFFFFF;
p_pix <: 0x00000000;
}

active line
#pragma loop unroll
for (i=0; i<HAL WORDS; i++) {
p_hs <: OxXFFFFFFFF;

p_pix <: bitrev(((vram[h] & OxO0000FFFF) << 16) | ((vram[h] & OxFFFF0000) >> 16)) & blank;
h++;
}
if repeat field at end of even lines step pointer ba line
if ((repeatLine) && ((1/2)*2 == 1)) {
h -= HAL_WORDS;

display task along with a ‘display on/off’ parameter together with the
partition information.

Note that the frame store memory is shared between the display and
drawing engine tasks and unlike normal ¢C’ this is treated as an error by
the XC compiler. This may be circumvented by using the ‘unsafe’ pragma that
informs the compiler that we really do know what we’re doing and that it
should allow memory sharing.

3.9 - gdc

This is the second task of the GDC emulation which handles
communication with the 6809 and implements the drawing engine of the 7220A.
The emulation of the drawing engine is not complete as of the time of
writing (ver 0.9) but it is sufficient to work with MON@9’s graphics drivers
and the majority of the MB2’s software including the large graphics demo.
The missing parts include the general purpose ‘fill’, zoom, rectangle and
circle drawing and any operation that reads data back from the GDC. These
missing parts are planned to be implemented in later versions.

The GDC emulation also doesn’t have the command and parameter FIFOs of
the 7220A, however this is a deliberate omission as the channel used to
communicate between the decodeMem task and the GDC task inherently contains
buffering and the blocking nature of the channel communication protocol
means that the FIFOs are unnecessary. Likewise the ‘busy’ bit of the GDC’s
stays register isn’t implemented as the channel will just harmlessly stall
if the graphics engine is busy.

There is one significant difference between the emulation and the

7220A and that is the addition of a new command and corresponding sub
commands not in the original chip. This command is designed to act as an

Page 24

Microbox 2K2 User Guide Version 0.95 10th May 2023

accelerator for various ‘bottleneck’ routines such as cursor location
generation and graphics character drawing.

The base command is @xDx and the sub commands are listed below :-

// command is of form Dx where x is the four bit sub command :-
// x =@ - draw char at existing eAD/dAD

// 1 - draw inverse char at existing eAD/dAD

// 2 - process char in terminal emulator using embedded char set *
// 3 - cursor off

// 4 - cursor on

// 5 - toggle cursor

// 6 - calculate eAD/dAD from row, col and offset

// 7 - calculate eAD/dAD from x,y (SETCRG replacement)

Sub commands @ and 1 are faster versions of the 7220A’s ‘GCHRD’ that
use the internal char set and assume a fixed character cell size and drawing
direction while sub command 2 implements a full terminal emulator that just
takes a stream of ASCCI characters and control codes. The control codes
match those of the terminal emulator in MON@9 and are listed in appendix 1.
Before using this internal terminal emulator it should be initialised by
sending it a @Ox@C (CLEARSCREEN) character.

Note that the terminal emulator character set is defined in char_set.h where
after an initial eight bytes that describe the character set attributes each
character is represented by an 11 byte byte sequence thus :-

// character set attributes
84, // screen chars/row

24, // screen rows

7, // char x pixels

11, // char y rows

9, // bounding box pixels
12, // bounding box rows

4, // initial attributes

11 // char spacing (pixels)

0b00111000 //Character = '&'
0b01000100
0b01000100
0b00101000
0b00010000
0b00101001
0b01000110
0b01000110
0b00111001
0b00000000
0b00000000

The graphics display resolution is 768 1 bit pixels by 576 lines
whilst the text display resolution is 768 1 bit pixels by 288 lines and the
two frame stores exist as a contiguous section of RAM of (768*576/16)*3/2
words or approx 81KB. This is defined as a array of ‘short’ (16 bit) words
to match the 7220A’s memory width. The base address of the graphics display

Page 25

Microbox 2K2 User Guide Version 0.95 10th May 2023
is 0x0000, the text display starts at 0x6C00 (16 bit words) and the top of
the frame store is @OxA1FF (16 bit words).

The graphic frame store is loaded at startup with an image defined in

‘bootImage.h’. This image can be viewed by using the ‘graph’ command after
booting FLEX but before running any other graphics command.

3.10 - fdcQ

The floppy disk controller will be implemented in a later release.

3.11 - DasBlinkenLights()

This task implements a simple ‘breathing’ LED that is used to
indicated that the firmware is up and running. It uses a timer to trigger
events and so uses the minimum of MIPs.

3.12 - ramdisk

In the same manner as the PROMdisk the RAMdisk task is functionally
equivalent to the RAMdisk of the MB2 but doesn’t directly emulate the
original design. In the MB2 the RAMdisk uses part of the GDC’s memory but in
the MB2K2 the RAMdisk memory is a separate part of the XU216’s RAM.

The RAMdisk’s format is defined in the header file:-
#define SECTORS_PER_TRACK 20
#define TRACKS_PER_DISK 40
#define BYTES_PER_SECTOR 256
#define RAMDISK_SIZE 204800

After reset the RAMdisk is formatted according to the defined format.

3.13 - F-RAMdisk

This is a new addition for the V1B P(Bs and has no analogue to the
original MB2 design. It is intended to free up internal Xmos RAM used by the
existing RAMdisk thus creating space for larger processor emulation such as
the 68K in future releases. The F-RAMdisk is non volatile and has no
limitations on the number of writes (unlike flash) and so is ideal for a
local scratch disk in cases where there is no remote storage connected via
FlexNet.

Unlike the RAMdisk the F-RAMdisk isn’t formatted after power up and so
must be formatted before first use. For Flex, this can be achieved either by
the MON@9 ‘DF’ command or the ‘framdisk' utility. For 0S-9 the usual
‘format’ command can be used. The F-RAM device has a capacity of 128KB.

Page 26

Microbox 2K2 User Guide Version 0.95 10th May 2023

3.14 - acia() and USB

The acia task emulates the 2123 DUART used on the MB2. Rather than an
implementation of a standard UART however, the MB2K2’s serial ports pass
through the USB connection as CDC class virtual com ports. These ports are
implemented as per the Xmos app note ¢AN@@184 USB CDC (Class as Virtual
Serial Port’ and use a total of four cores on tile 1:-

® A core running the XUD USB device library.

® A core implementing Endpoint@ responding to both standard and CDC class-
specific USB requests.

® Two cores handling the data endpoints and notification endpoints of the
CDC ACM class, one for each virtual com port instance.

The acia task communicates with the endpoint handlers by means of an XC
interface of type ‘usb_cdc_interface’ which has methods to check for
received data (available_bytes) and read/write characters. (get_char &
put.char). The four USB cores communicate in part using shared memory so

need to be placed on the same tile. Note that the virtual com port doesn’t
have a defined baud rate associated with it at the device end so the monitor
routines and storage associated with that are not implemented on the MB2K2.

It’s recommended that Windows 1@ is used for the host computer (if
using Windows is required) as this natively supports dual CDC class devices,
however if Windows 7 is used then a driver needs installing on the host
system. This driver is included in the release and is located in the MB2K2
project folder. No driver is of course required for MacOS or Linux.

The firmware also supports replacing the USB interface with a pair of
UARTs which are attached to the auxiliary serial connectors on the P(B.
These are intended to be used with USB to serial conversion cables such as
the FTDI ‘TTL-232R-3V3’ in situations where the USB connection is used for
power only.

The UARTs are configured for baud rate of 115200 with eight bit data,
no parity and one stop bit and have 1KB buffers on the receive side.

Page 27

Microbox 2K2 User Guide Version 0.95 10th May 2023

Page 28

Microbox 2K2 User Guide Version 0.95 10th May 2023

Section 4 - Customisation

In essence the entirety of the MB2K2 firmware is customisable as the
full source code is available in the releases however within the existing
MB2 emulation there are also sections that can be customised without
changing the underlying firmware and these are detailed in this section.

4.1 - MON@9

The source of the embedded 6809 assembly language MON@9 monitor is
located in the ‘mon@9’ folder in the "mB2K2 project. After modifying the
source it needs to be assembled and then merged into the 64KB memory array
together with the FLEX image.

To assist with this process there is a batch file in the MON@9 folder
which will run the assembler (AQ9), merge the generated SREC file and FLEX
SREC file into the memory array definition then copy the resultant header
file into the source files. When the project is subsequently built the new
version of MON@9 will be included.

Included with the MON@9 sources are optional versions of the GDC
drivers that use the new additions to the GDC’s command set mentioned in the
firmware description section.

GDCSUBS_V1.TXT - use the original unmodified GDC commands

GDCSUBS_V2.TXT - use the new versions of SETCRG, POINT and LINE (faster)
GDCOUTV1.TXT - use the original unmodified GDC commands for text display
GDCOUTV2.TXT - use the versions of RCTOCR and PUTCHAR (faster)
GDCOUTV3.TXT - use the new GDC internal terminal emulator (fastest)

After editing MON@9, run the ‘build’ script in the ‘MON@9’ folder in
order to merge the assembled files into the RAM image.

4.2 - 0/S images

The source code for the 0S-9 kernel and core modules that are pre
loaded into RAM is in the ‘0s9’ folder in the project. After modifying any
of these files it is necessary to run the ‘build’ script in the o0s9 folder
followed by the ‘build’ script in the ‘MON@9’ folder in order to merge the
assembled files into the RAM image.

To use a different version of FLEX simply replace the ‘flex.cor’ file on the
PROMdisk image (FLEXPD.dsk) with the new version and then run the ‘build’
script in the PROMdisk folder to merge the FLEX and 0S-9 PROMdisk images
into the single MB2K2PD.dsk image that is used by xFlash.

4.3 - GDCOUT character set

The character set used by MON@9’s native terminal emulation (not the
GDC’s internal version) is pre loaded into the 6809’s ‘shadow RAM’ by a
header file in the RAM folder in the MB2KZ2 project. After the initial
padding bytes there are eight bytes that describe the character set

Page 29

Microbox 2K2 User Guide Version 0.95 10th May 2023

attributes and after that each character is represented by an 11 byte byte
sequence thus :-

// character set attributes
84, // screen chars/row
24, // screen rows
7, // char x pixels
11, // char y rows
9, // bounding box pixels
12, // bounding box rows
4, // initial attributes
11 // char spacing (pixels)

0b00111000 //Character = '&'
0b01000100
0b01000100
0b00101000
0b00010000
0b00101001
0b01000110
0b01000110
0b00111001
0b00000000
0b00000000

BN N N N N N N N N N w = o= o=

4.4 - PS/2 keyboard mapping

Keypress messages from the PS/2 keyboard are mapped to ASCII values by
tracking the key up/key down and shift states and applying these states and
the raw key value to a pre defined look up table. This table is composed of
four sections, one each for shift and shift lock on/off. This mapping is
defined in the ‘keymap.h’ header file located in the PIA folder in the MBZ2K2
project and this file can be simply edited to change the key mapping. An
example of the mapping is shown below.

0x00 //Scancode = $00

,0x05 //Scancode = $01 F9 CEDRIC - delete char

,0x00 //Scancode = $02

,0x19 //Scancode = $03 F5 CEDRIC - cut

, OXOE //Scancode = $04 F3 CEDRIC - search and replace
,0x03 //Scancode = $05 F1 CEDRIC - search forward

, 0x1A //Scancode = $06 F2 CEDRIC - search back

,0x08 //Scancode = $07 F12 CEDRIC - delete left (backspace)
,0x00 //Scancode = $08

,0x17 //Scancode = $09 F10 CEDRIC - delete word

,0x13 //Scancode = $0A F8 CEDRIC -

,0x10 //Scancode = $0B Fo6 CEDRIC - paste

,0x01 //Scancode = $0C F4 CEDRIC - global replace

,0x09 //Scancode = $@D Tab
, ! //Scancode = $0QE :
,0x00 //Scancode = $0OF

,0x00 //Scancode = $10

,0x00 //Scancode = $11

,0x00 //Scancode = $12

Page 30

Microbox 2K2 User Guide Version 0.95 10th May 2023

,0x00 //Scancode = $13
,0x00 //Scancode = $14

,'q //Scancode = $15 q
, 1t //Scancode = $16 1
,0x00 //Scancode = $17

,0x00 //Scancode = $18

,0x00 //Scancode = $19

,'z' //Scancode = $1A z
,'s’ //Scancode = $1B S
,'al //Scancode = $1C a
,w! //Scancode = $1D w
,'2! //Scancode = $1E 2

,0x00 //Scancode = $1F

4.5 - RTC PRAM defaults

These are loaded if MON@9 detects that power has been lost to the
battery backed RTC and are defined in the MON@9 file ‘minit.txt’ as the
table ‘RTCTAB’ and the values here can be simply edited to change the
defaults.

RTCTAB FCB %00001111 MB2 values, not used in the MB2K2.

FCB $AA powerfail flag

FCB 0,1,2,$FF promdisk, ramdisk, f-ramdisk, unassigned

FCB $7F,0,$3A,%$18,$50,0,0,$08,0,0,$1B TTYSET parameters.

FCB @,1 ASN parameters.

FCB 300,300, %00,%$00,$00,$00,$00,$00 GDC timing parameters

FCB 0,0,0,0,0,0,0 reserved

FCB 3$00,%$11,%$22,%$33,%$44,$55,$66,$77,$88,$99, $AA, $BB, $CC, $DD, $EE, $FF user
params

4.6 - PROMdisk image

The PROMdisk .DSK disk image that is loaded into flash is stored in
the ‘promdisk’ folder in the MB2K2 project. It is formed by running the
‘build’ script in the PROMdisk folder to merge the FLEX and 0S-9 PROMdisk
images into the single MB2K2PD.dsk image that is used by xFlash.

4.7 - boot image

The graphics frame store is initialised at startup with an image
defined in the ‘bootimage.h’ header file in the GDC source folder. This
image is formed of a byte array generated using the image2cpp utility at
https://javl.github.io/image2cpp/

Page 31

Microbox 2K2 User Guide Version 0.95 10th May 2023

Page 32

Microbox 2K2 User Guide Version 0.95 10th May 2023

Section 5 - MON@9 commands

There are fewer commands in the MB2K2 version of MONQ9 compared to
earlier versions. This is because the majority of debugging can now be done
directly at the 0S level since FLEX is 'built in' to the basic system and so
software such as the TSC Debug package can be used instead of the lower
level debugger. The space freed up has been used for additional drivers
instead of commands. Some basic commands have been left in however, and
these are documented below.

There are twenty three monitor commands, each represented by a two
letter name. Typing the two letters will invoke that command, which will
then prompt for any necessary parameters. There are four types of
parameter: -

Four digit hex number................ XXXX
Two digit hex number................... YY
One digit hex number.................... z
Text string or character................ T

All commands case insensitive.

5.1 - Memory commands

The first six commands are concerned with examining, modifying and
testing memory. Of these, the first two have a common control format where a
CR will examine the next location or page, a '-' will examine the previous
location or page, and any other character will exit the command.

Command: DU Dump memory

Format: Hex and ASCII dump of memory from XXXX

Action: Displays a 256 byte block of memory as two digit hex
values and ASCII. Any non-printable character will represented
by a '.'

Command: ME Memory Examine and alter

Format: Memory examine and alter from XXXX

Action: Displays an address and the contents of that address. The
contents may be changed by typing a space followed by the new
two digit value. A verify is performed on the location changed.

Command: PO Poke Memory

Format: Poke memory location at XXXX value YY

Action: Deposits the data into the location without verifying or
reading the next address. Used for testing memory mapped
peripheral devices where a read would corrupt data.

Command: PE Peek Memory

Format: Peek memory location at XXXX

Action: Displays the data stored at location without reading the next
address.

Page 33

Microbox 2K2 User Guide Version 0.95 10th May 2023

Command: TM Test Memory

Format: Test memory from XXXX to XXXX

Action: Tests memory in the range given. Any data in the memory
will be overwritten.

Note that ‘TM’ command is largely redundant in the MB2K2 as the RAM is
internal to the XU216 and so extremely unlikely to have any errors, however
this command has been kept as it provides a handy benchmark of CPU
performance between different implementations.

Command: FM Fill Memory with constant
Format: Fill memory with constant from XXXX to XXXX value YY
Action: Fills the indicated memory range with the data.

5.2 - /0 commands

The monitor input/output may come independently from one of three
sources :-

PORT NUMBER INPUT OUTPUT

0 Keyboard Internal display
1 serial port @ Serial port 0

2 serial port 1 Serial port 1

The initial ports are set on reset by the configuration switches.

Command: SI Set Input port
Format: Set input port to Z
Action: Sets the active input port

Command: SO Set output port
Format: Set output port to Z
Action: Sets the active output port.

5.3 - Debug commands

The next five commands are concerned with running programs directly from
within MON@9. A breakpoint can be set with the BP command which when reached
will return control to MON@9 with an automatic display of registers. The
register values may be modified using the ME command. (The register values
are stored in the 10 bytes below the location pointed to by the stack
pointer S.)

Command: DR Display Registers
Format: Display registers
Action: Displays the current program register set.

Command: BR Set breakpoint

Format: Set Breakpoint at XXXX

Action: Replaces the byte pointed to by a SWI ($3F). The breakpoint is
cleared when hit and the saved byte returned.

Page 34

Microbox 2K2 User Guide Version 0.95 10th May 2023

Command: RP Run Program

Format: Run program from XXXX

Action: Loads the processor registers, then jumps to program starting
at address given.

Command: CP Continue Program
Format: Continue program after SWI....
Action: Continues execution of a program from a breakpoint instruction.

Command: JU Jump to program

Format: Jump to program at XXXX

Action: Execute a program starting at the given address without
loading the registers first.

5.4 - Disk commands

There are five commands for disk control and testing. Note that any
errors reported will be a copy of the emulated disc controller status
register.

Command: RS Read Sector

Format: Read sector on drive Z track YY sector YY to XXXX

Action: Reads a 256 byte sector from the logical drive to
memory.

Command: WS Write sector
Format: Write sector to drive Z track YY sector YY from XXXX
Action: Writes a sector from memory to the drive.

Command: TS Test drive Stepping

Format: Test stepping on drive Z Hit any key to stop.

Action: Selects and steps drive between track 00 and track 39 and
back again. (unused for now as no FDC)

Command: DF Disc Format to FLEX standard

Format: Disc format on drive Z Scratch disc in drive? T

Action: Formats a disc to single sided, single density, 40 track FLEX
standard (390 sectors free). Note that the date is not
set, nor are the sectors tested. For now, this command is intended
to format the F-RAMdisk

Command: TD Test Drive

Format: Random sector read on drive Z

Action: Reads random sectors on the drive. As there is no FDC yet, this
command is redundant as the silicon based drives always return
with no error.

Page 35

Microbox 2K2 User Guide Version 0.95 10th May 2023

5.5 - FLEX related commands

Command:
Format:
Action:

Command:
Format:
Action:

Command:
Format:
Action:

JF Jump to FLEX warm start
Jump to flex warm start.....
Jumps to address $CD@3

BF Boot FLEX from the system drive

Booting FLEX from system drive....

FLEX is loaded from logical drive @ by firstly looking in the
directory for either FLEX.SYS or FLEX.COR. Once loaded then the
command overlays the console and disk jump tables, disables the
date prompt, and sets the TTYSET and ASN parameters from the
RTC/PRAM before jumping to the FLEX cold start point.

Note that is not necessary to configure and link a version of FLEX
as any copy of FLEX regardless of the machine it was designed to
run on may be used.

RM Remote mount PROMdisk image

Remote mount PROMdisk image (MB2K2.DSK) to drive 0

Mount a FLEXNet connected remote disk image named MB2KZ2PD.DSK

to logical drive @. This is intended to act as a ‘get out of jail
free’ card in case corruption of the PROMdisk image in flash stops
the system from booting.

5.6 - 0S-9 related commands

Command:
Format:
Action:

BO Boot 0S-9 from the internal pre loaded image

Booting internal 0S-9 L1.....

Set up the 0S9 interrupt vectors, map in the shadow RAM and move
the 0S9 boot image with the 0S9 kernel and ‘ROM’ memory resident
modules from $0000 -> $C000@, and start the kernel.

5.7 - Misc commands

The last two commands are concerned with testing memory and the real
time clock.

Command:

DC Display RTC contents

Format: Display clock contents
Action: Displays the RTC ram in the following way:-

08:55:03
00 00 00
OF

AA

00 01 FF
28 00 3A
00 01

00 00 00
00 11 22

Command:
Format:
Action:

Page 36

28/04/20 time and date
80 RTC control regs
FDC parameters
RTC powerful flag
FF logical drive mapping
18 50 00 00 08 00 00 1B FLEX ‘TTYSET’ params
FLEX ‘ASN’ parameters
00 00 00 00 00 00 00 00 00 00 00 00 reserved for future use
33 44 55 66 77 88 99 AA BB CC DD EE FF user application bytes
MC Modify RTC

RTC examine and alter from YY
Examine and modify RTC ram contents in the same way as ME.

Microbox 2K2 User Guide Version 0.95 10th May 2023

Section 6 - FLEX/0S-9 utilities

The section describes the utilities written to support specific
features of the MB2K2. For FLEX the utilities are pre installed on the
PROMdisk and also on MB2K2_SRC DSK in the MB2K2 utilities folder. 0S-9 just
uses versions of the FLEXNet utilities and these are found on the PROMdisk.

6.1 - FLEX specific utilities

TIME.C(MD - This program gives the date/time from the RTC if installed. It
also updates the FLEX date registers, and so should be included in your
startup.txt file to give FLEX the correct date on boot.

SETTIME.CMD - This program sets the RTC time and date and is Y2K
compliant.
ALLOCATE.CMD - 1In the MB2K2 there is no fixed relationship between the

logical drive numbers of FLEX and the physical drives. The allocate

command sets up this mapping. Running the command without any parameters
will give the current mapping. Running the command followed

by a space and then four characters from this list will set the allocation:-

Q..... Drive type @ is the PROMdisk

1..... Drive type 1 is the RAMdisk

2..... Drive type 2 is the F-RAMdisk

3..... Drive type 3 is the remote FLEXNet drive(s)

If a logical drive is not to be allocated then a '.' should be used. ie

‘ALLOCATE 0123’ would assign FLEX drive zero to the PROMdisk, drive 1 to the
RAMdisk, the F-RAMdisk to drive two and a remote FLEXNet volume to drive
three.

‘ALLOCATE 20.3’° would assign the F-RAMdisk to drive zero, the PROMdisk to
drive 1. nothing to drive two, and and a remote FLEXNet volume to drive
three.

Multiple FLEXNet drives may be allocated, so ‘ALLOCATE 3333’ would assign
all four FLEX drives to FLEXNet. If the RTC/PRAM is not valid (due to
failure of the battery supply) then the default allocation is (01..).

TTYSET.CMD and ASN.CMD - These are copies of the standard FLEX utilities
which have been modified to save the current values to the RTC. In this way
the TTYSET and ASN parameters will be set automatically when booting FLEX

FAST.C(MD - Take control of the graphics terminal emulation from MON@9 and
passes it to the GDC’s internal emulator. This has the same effect as
building MON@9 using the fastest version of ‘GDCOUT.TXT’.

PDRW.CMD - Enables writing to the PROMdisk.

Page 37

Microbox 2K2 User Guide Version 0.95 10th May 2023

PDRO.CMD - Disables writing to the PROMdisk, this is the default.

FMTPD.CMD - Format PROMdisk allows increasing the PROMdisk size to 1.4MB
‘in situ’ Note that this command will erase the PROMdisk so should be used
with care. If the PROMdisk becomes corrupted then the system can restored
using the ‘RM’ command in MON@9 to mount a remote version of the PROMdisk
for recovery.

FMTFD.CMD - Format F-RAM disk to the either the standard Flex format of 40
track SS/SD (100KB) allowing the use of the standard Flex diagnostic
utilities, or to the non standard format of 51 tracks SS/SD that maximises
the available storage.

FLEXLINK.TXT & MONLINK.TXT - These files contain all of the FLEX and MON@9
equates RMB's and jump table entries for use in your own programs. To use
them in a program include the LIB pseudo op :-

OPT NOL SWITCH OFF LISTING

LIB FLEXLINK LINK IN FLEXLINK AND MONLINK
OPT LIS SWITCH ON LISTING

*

ORG $C100 ORIGIN IS FLEX TPA

*

START JSR [CLEARG] JUST CLEAR THE GRAPHICS SCREEN
JMP FWARM AND RETURN TO FLEX

*

END START TRANSFER ADDRESS IS START

Note that the monitor subroutine call is done by an indirect JSR.
The source of flexlink and monlink is presented in appendix 2.

TYIO.TXT & STY-MB2.TXT - These two files are the drivers to adapt the word
processing program STYLOGRAPH to the MB2KZ2. To adapt the program follow the
procedure laid out in the STYLOGRAPH manual.

DEMO.CMD - This is a graphics demo for the MB2 which runs unmodified on
the MB2K2.

TEXT.CMD - This program sets the display to the text screen.

GRAPH.CMD - This program sets the display to the graphics screen.

CLEARG.CMD - This command clears the graphics screen.

RECORD.CMD - This program will accept bytes from serial port 1 and store
them into memory. The program assumes that the graphics display code of
appendix 4 is being used.

Page 38

Microbox 2K2 User Guide Version 0.95 10th May 2023

INTERP.CMD - This program will decode the graphics display code in memory
(starting from 0x0000), and display the commands and parameters on the
text output device.

PLAY.C(MD - This program will display the graphics images generated by the
graphics display code in memory.

GRAPHICS.MAC - This is the graphics display code macro set. (see appendix
4 for more details)

The remaining utilities on the DSK are all modified versions of the
utilities supplied as part of Michael Evenson’s FLEXNet package for the
Windows 0S. Thee is no support for MacOS or Linux in this release but this
is expected to be added in the future.

All of the utilities have been re-named to RXXX for consistency even
though they support multiple mounted drives. Because the MB2K2 design has
FLEXNet compatible drivers in ROM, the utilities do not need to check and
link to drivers installed by the FNETDRV command, (which is no longer
needed), instead the RMOUNT command has the network checks that were
previously part of FNETDRV. The following descriptions are from the FLEXNet
manual with additions for the MB2K2.

RCREATE - Remote Create

The RCREATE command will prompt the user for the location, name, and
other parameters to create a new DSK file. After all parameters are
entered, the user will be asked for a confirmation (yes/no) and if the
answer is positive the file will be created. No parameters are required in
the command line.

Example:

+++RCREATE

File path ? C:\folder3

File name ? newname

Disk number (in decimal) ? 123
Number of tracks (in decimal) ? 35
Sectors per track (in decimal) ? 10
OK to proceed ? Y

File successfully created
+++

NOTES:

- The file path is the directory where the new file will be created. If none
is specified, the file will be created in the current
directory.

- The file name ("newname") will be used for both the name of the DSK file,

as known by Windows, and for the volume name which is stored in the SIR
(track @, sector 3) of the DSK file.

Page 39

Microbox 2K2 User Guide Version 0.95 10th May 2023

- The disk number, 123 in this example, is stored as the volume number in
the SIR.

- If non-numeric values are entered for the disk number, the number of
tracks or the number of sectors per track, the question will be repeated.

- RCREATE does not check for the "validity" of the track/sector format
entered by the user. The file will be created, as long as the values given
are numeric.

- In the above example, the disk image will be created with 35 tracks
(including track @) of 10 sectors, for a total of 340 data sectors.

- Note that RCREATing a disk does not automatically RMOUNT it or change the
current directory. You must use RCD to change directories if needed, and
RMOUNT to mount the new disk.

RDELETE - Remote Delete

RDELETE will prompt the user for the file path and the name of the
file to be deleted. If no file path is given, the current directory will be
assumed. RDELETE also adds a .DSK extension to the filename. RDELETE will
then display the full path and name of the file, and will prompt the user
for a response (Yes/No) before deleting the file. If the file cannot be
found, an error message will be displayed.

Syntax: RDELETE <filename> [cr]

RLIST - Remote List

RLIST displays a list of all the directories which are contained in
the current directory. It is provided as an aid to the user when
"navigating"” in the Windows directory tree structure. No parameters are
needed. RLIST displays the listing in the same fashion as RDIR, i.e. 20
lines at a time, then prompting the user for more.

Syntax: RLIST [cr]

6.2 - 0S-9 and FLEX utilities

RCD - Remote Change Directory

This command will change the current directory, which is the default
directory which the other utilities will use. For example, if no file path
is provided in the RCREATE command, the new file will be created in the
current directory. If RCD is typed without parameters, the the current file
path will be shown.

Syntax: RCD <filepath>

Example: RCD C:\folder3

Page 40

Microbox 2K2 User Guide Version 0.95 10th May 2023

RDIR - Remote Directory

RDIR performs a DIR command under DOS, and returns an exact copy of
the listing generated on the MS-DOS screen:

- The current directory is used

- Only files with the extension .DSK will be listed.

- Command line parameters are allowed, and are passed to the Windows
command.

- RDIR displays 20 lines at a time, then prompts the user before displaying
the next 20 lines. Typing a space will display the next lines, typing [esc]
will stop the listing and return to the FLEX prompt.

Examples
+++RDIR [cr] Lists all DSK files in the current directory

+++RDIR A2* [cr] Lists all DSK files which start with A2.

RESYNC - RE-SYNChronize

If something should happen and you restart the host computer, it will
be looking for the Sync information from the FLEX/0S-9 system. RESYNC will
re-establish the communication link and you can proceed. The command 1is
simply RESYNC. If all is working properly you should not have to do anything
at the PC end of the link.

Syntax: RESYNC [cr]

RMOUNT - Remote Mount

RMOUNT will "mount" a DSK file to the given drive number, in other
words it selects a DSK file, opens it and sets it as the drive. After a file
has been RMOUNTed, it can be read or written to by FLEX/0S-9 as it were a
standard drive. RMOUNT assumes that the .DSK file is in the current Windows
directory otherwise, the user may give the complete path and file name to
RMOUNT a file which is in another directory. RMOUNT does not require a file
extension to be typed; however, if one is entered, it must be .DSK
(lowercase letters OK) or an error message will be generated. RMOUNT will
check that the remote computer has FLEXNet running and will connect if
needed.

NOTE: There is no need to "unmount"” a file before RMOUNTing another one.

However, a file which is "mounted" is open under Windows, and may be
corrupted if the host computer is powered down while the file is open.

Examples:
+++RMOUNT <drive> <filename.dsk> [cr]
+++RMOUNT <drive> <filename> [cr]

Mount a file which is in the current directory. FLEXNet will automatically
add the .DSK extension to the file name.

+++RMOUNT <drive> c:\folder\filename [cr]

Page 41

Microbox 2K2 User Guide Version 0.95 10th May 2023

Mount a file which is in any directory. In this case the file will be
mounted without changing the current directory.

Note that for 0S-9 <drive> is one of the /H@ through /H3 device paths. If
<drive is not specified then /H@ is assumed.

For 0S-9, RMOUNT is a memory resident module loaded at boot time and so may
be used to connect to a remote drive even if there is no valid PROMdisk
image.

REXIT - Remote Exit

This command will close all files open on the host computer and exit
to Windows.

6.3 - 0S-9 only utilities

blinky - simple multitasking test program
blinky will simply flash the green ‘6809’ LED approximately once per
second. It’s only function is to test that interrupts and multitasking is

running. Append a ‘&’ to the file name when launching from the Shell to make
it a background task.

Syntax: blinky& [cr]

gotoxy - MB2K2 specific terminal emulator control code data file for the
‘Frank Hogg Dyna’ applications such as DynaStar.

H2 & H3 - are device descriptor for the last two FLEXLink drives (H@ and H@
are memory resident at boot time).

Page 42

Microbox 2K2 User Guide Version 0.95 10th May 2023

Section 7 - Programming guide

The subroutines in MON@9 may be called from other programs by means of
indirect JSRs via a table located at $FQ0@. This table retains the same
structure as MON@9 for the MBZ2 for backwards compatibility and is included
in the monlink.txt header file. The header files are listed in appendix 2
and can be found on the MB2KZ2_SRC DSK in this package.

To use these routines in your program, insert a LIB flexlink directive
at the beginning, and the use an indirect jump to subroutine whenever a
routine is used. ie

opt nol
1ib flexlink
opt lis

ldx #100
ldy #354
jsr [LINE]

7.1 - MB2 MON@9 general routines

STATUS

® Status routine.

® Entry: no parameters.

® Exit: (Z2)=0 if character ready.

INCH1

® Tnput character with no echo and input.
® Entry: no parameters.

e Exit: (A) = character.

INCH

® Tnput character with echo INCH
® Entry: no parameters

® Exit: (A) = character.

OUTCH

® Qutput char.

® Entry: (A) = character.
® Exit: no change.

READ

® Read sector routine.

® Entry: (XD = address where sector is to be placed.
° (A) = Track number.

. (B) = Sector number.

® Exit: (B) = Error code (z)=1 if no error.

Page 43

Microbox 2K2 User Guide Version 0.95 10th May 2023

WRITE

® Write track routine.

® Entry: (X) = Address of area of memory from which the
data will be taken.

] (A) = Track number.

] (B) = Sector number.

® Exit: (B) = Error condition, (Z)=1 no an error.

VERIFY

e Verify sector routine.

® Entry: no parameters.

e Exit: (B) = Error condition (Z)=1 if no error.

RST

® Restore drive to track 00.

® Entry: (XD = FCB address (3,X contains drive number).
® Exit: (B) = Error condition, (Z)=1 if no error.

DRV
® Select current drive.

® Entry: (XD = FCB address (3,X contains drive number).

® Exit: (B) = Error condition, (Z)=0 and (c)=1 if error.
° (B) = $0F if non existent drive.

CHKRDY

® Check for drive ready.

® Entry: (XD = FCB address (3,X contains drive number)>

® Exit: (B) = Error condition, (Z)=0 AND (O)=1 if
drive is not ready.

QUICK

® Quick drive ready check.

® Entry: (XD = FCB address (3,X contains drive number).

® Exit: (B) = Error condition, (Z)=0 AND (c)=1 if drive
not ready.

DINIT

e Tnit (cold start).

® Entry: no parameters.
® Exit: no change.

WARM

e Warm start.

® Entry: no parameters.
® Exit: no change.

SEEK

® Seek track.

® Entry: (A) = Track number.

] (B) = Sector number.

® Exit: (B) = Error condition, (Z)=1 if no error.

Page 44

Microbox 2K2 User Guide Version 0.95 10th May 2023

PCRLF

® Print a CR followed by a LF.
® Entry: no parameters.

® Exit: (A) destroyed.

PDATA1

® Print character string .

® Entry: (XD = Pointer to character string.

® Exit: (X) = Pointer to end of string token Hex(04).
] (A) Destroyed.

PSTRNG
® Print character string preceded by a CR,LF.
® Entry: (XD = Pointer to character string.

® Exit: (X) = Pointer to end of string token Hex(04).
] (A) = Destroyed.
PRINTA

® Print the A reg.
® Entry: (A) = Data to be printed.

PRINTX
® Print the X reg.
® Entry: (XD = Data to be printed.

DELAY

® Delay routine.

® Entry: (XD = Delay time in milli seconds.
® Exit: no change.

BADDR
® Build a four hex digit address.

® Entry: no parameters.

e Exit: (X) = Address.

] (A) = Destroyed.
° (B) = Destroyed.
BYTE

® Get a two digit hex byte.
® Entry: no parameters.
® Exit: (A) = Byte.

OUTHL

® Print left hex digit.

® Entry: (A) = Byte containing digit.

® Exit: (A) = Byte containing shifted digit.

Page 45

Microbox 2K2 User Guide Version 0.95 10th May 2023

OUTHR

e Qutput right hex digit.

® Entry: (A) = Byte containing digit.
® Exit: (A) = ASCII coded digit.

INHEX

® Tnput a valid hex character (If not hex then
backspace).

® Entry: no parameters.

e Exit: (A) = Valid hex char.

OUT2H

OUTZ2HA

OUT4HS

OUTZ2HS

® Hex print routines.

® Entry: (XD = Pointer to a one or two byte hex number.
® Exit: (A) = Destroyed.

OouTS

® Qutput a space.

® Entry: no parameters.

e Exit (A) = Destroyed.

RANDOM

® Random number generator.

® Entry: no parameters.

e Exit: (A) = Random number from @ to 255.

GETRTC

® Get a byte from the RTC.

® Entry : (B) = RTC address.
e Exit : (A) = Data.

PUTRTC
® Send a byte to the RTC.
® Entry : (B) = RTC address (A) = Data

BLEEP
* Beep for 100ms.

7.2 - MBZ2K2 MON@9 additional routines

These routines are not in the original MB2 version.

TOUPPER

® convert to upper case chars in the range a-z

® Entry: (A) = ASCII char to be converted.

® Exit: (A) = converted char if in range, else no change.

Page 46

Microbox 2K2 User Guide Version 0.95 10th May 2023

BCD2BIN

e convert BCD coded value to binary
® Entry: (A) = value to be converted.
e Exit: (A) = converted value.

BIN2BCD

® convert binary value to BCD

® Entry: (A) = value to be converted.
e Exit: (A) = converted value.

7.3 - MB2/MB2K2 MON@9 graphics routines

GCOM

® Send GDC command.

® Entry: (A) = GDC command
® Exit: No change.

GPRM

® Send GDC parameter.

® Entry: (A) = GDC parameter
® Exit: No change.

GPRMI

® Get a parameter from GDC.
® Entry: No parameters.

® Exit: (A) = Parameter byte

MASK

® Set mask.

® Entry: (X) = Mask value
® Exit: No change.

SETPEN
® Define line profile and 'pen' type.
® Entry: (A) = Pen type (@=replace l=complement
2=reset 3=set)
(X) = Line profile
Exit: No change.

SETPAT

® Set up graphics pattern in parameter ram.
® Entry: (XD = Pointer to eight byte pattern
® Exit: No change.

FIGSF
® Start figure drawing using parameter set in ram.
® Entry: (B) = Number of parameter bytes.

Page 47

Microbox 2K2 User Guide Version 0.95 10th May 2023

FIGSG

e Start graphics drawing using parameter set in ram.
® Entry: (B) = Number of parameter bytes.

® Exit: No change

SETPAR
® Set up display partitions in GDC.

® Entry: (XD = Start address of partition 1

] (D) = Start address of partition 2

] (YD) = Number of lines in partition 1
] (U) = Number of lines in partition 2
® Exit: No change.

SYNC

® Wait until vertical blanking period.

® Entry: No parameters.

® Exit: No change.

SETCRG

e Set graphics cursor.

Entry: (XD = x coord (0<=x<=767)
(YD) =y coord (0<=y<=575)

Exit: No change.

GETCRG

® Read graphics cursor.

® Entry: No parameters.

® Exit: (X) = x coord of cursor
] (YD) =y coord of cursor

OFF

® Switch off display.

® Entry: No parameters.
® Exit: No change.

ON

® Switch on display.

® Entry: No parameters.
® Exit: No change.

GRAPH

e Set display to graphics.
® Entry: No parameters.

® Exit: No change.

Page 48

Microbox 2K2 User Guide Version 0.95 10th May 2023

MODE
e Set GDC mode.

® Entry: (A) = New mode byte

] (B) = Read flag

® Exit: If (B) <> @ then (A) = New mode byte
] If (B) = @ then (A) = OLD mode byte
Z00OM

® Set graphics zoom.

® Entry: (A) = New zoom byte

] (B) = Read flag

® Exit: If (B) <> @ then (A) = New zoom byte

] If (B) = @ then (A) = OLD zoom byte

FILL

® Area fill.

® Entry: (A) = Initial drawing direction

] (X) = Number of pixels in the initial
direction

. (YD) = Number of pixels in the perpendicular
direction

® Exit: No change.

CLEARG

® (Clear graphics screen.
® Entry: No parameters.
® Exit: No change.

CLEARX

® (Clear GDC ram from current cursor.

® Entry: (A) = Drawing mode (@=replace l=complement
2=reset 3=set)

] (XD = Number of words to be cleared

® Exit: No change

GDCINIT

e Init display.

® Entry: No parameters.
® Exit: No change.

POINT

® Plot a point at the current cursor position.
® Entry: No parameters.

® Exit: No change.

LINE

® Plot a line from the current cursor portion.
® Entry: (XD = x coord

] (YD) = ® Entry: coord

® Exit: No change.

Page 49

Microbox 2K2 User Guide Version 0.95 10th May 2023

Page 50

RECT

® Plot a rectangle.

® Entry: (A) = Initial drawing direction

] (X) = Length of side in the initial direction

o (Y) = Length of side in the perpendicular direction
® Exit: No change.

CIRCLE

® Plot a circle at the current cursor location.
® Entry: (A) = radius of circle (0<A<127)

® Exit: No change.

SETCRT

® Set text cursor.

® Entry: (XD = Cursor word address
® Exit: No change.

GETCRT

® Get text cursor.

® Entry: No parameters.

e Exit: (X) = Cursor word address

TEXT

® Set display to text.
® Entry: No parameters.
® Exit: No change.

CLEART

® (Clear text screen.

® Entry: No parameters.
® Exit: No change.

GDCOUT
® Put ascii character to screen.
® Entry: (A) = Character
(control codes are given in appendix 1)

Microbox 2K2 User Guide Version 0.95 10th May 2023

Appendix 1 - Terminal emulator control codes

| DECIMAL | HEX | KEY | FUNCTION I
I 0 | 00 | r@ | NULL I
I 1 I o1 | ~A | - I
I 2 | @2 1 AB I - I
I 3 I 03 | AC I - I
I 4 | @4 | AD I EOT I
I 5 | @5 | AE I - I
I 6 | 06 | AF I - I
I 7 I 07 | AG I BELL I
I 8 | @08 | AH I BACKSPACE (CURSOR LEFT) I
I 9 Il 09 | AI I CURSOR RIGHT I
I 10 I QA | AJ I LINE FEED (CURSOR DOWN) I
I 11 | @B | AK | CURSOR UP I
I 12 | oC | AL I CLEAR SCREEN I
I 13 | eb | M | RETURN I
I 14 | OE | AN I MOVE CURSOR (SEE NOTE) I
I 15 | OF | A0 I HOME I
I 16 | 10 | AP I SCREEN ON I
I 17 I 111 AQ | SCREEN OFF I
I 18 I 12 1 AR | CURSOR ON I
I 19 I 13 1 AS I CURSOR OFF I
I 20 I 14 | AT | SET CURSOR TYPE 1

I 21 | 151 AU I SET CURSOR TYPE 2 I
I 22 I 16 | AV | INVERT ON I
I 23 I 17 1 AW | INVERT OFF I
I 24 | 18 | AX I ERASE TO END OF LINE I
I 25 I 19 | AY I ERASE TO END OF SCREEN I
I 26 I 1A | ~Z I ERASE LINE I
I 27 | 1B | - I ESCAPE I
I 28 | 1C | - I - I
I 29 | 1D | - I - I
I 30 | 1E | - I - I
I 31 | 1F | - I - I

NOTE: Move cursor has two parameters. The control code should be followed
by two bytes, row and column. The home position is 0,0. The value 0x20
should be added to each value. ie to move the cursor to row 4 col 7, send
the byte sequence OxQE,0x24,0x27.

Page 51

Microbox 2K2 User Guide Version 0.95 10th May 2023

Page 52

Microbox 2K2 User Guide Version 0.95 10th May 2023

Appendix 2 - Flexlink and Monlink sources

2.1 - Monlink

* Monitor definitions and equates for the MB2K2.
EQ0® PROM EQU $E000 Eprom start address.
DEQ® RAM EQU $DEQO Scratch ram + stack space.
FFO@ IO EQU $FFOQ I/0 base address.
DEGF SSTACK EQU (RAM+127-16) Top of system stack.
DF8@ SCRAT EQU (RAM+384) Start of scratch space.
*
* User callable subroutines. Use indirect JSR's to call.
FO0@ RESET EQU $F000 Cold start.
FO@2 CONTRL EQU $F002 Warm start.
FO@4 1INCH1 EQU $F004 Input char without an echo .
FO06 INCH EQU $F006 Input char .
FO@8 STATUS EQU $F008 Check for char.
FOOA OUTCH EQU $FO0A Output char.
FOOC PDATA1 EQU $Fo0C Print string terminated by hex(04).
FOOE PCRLF EQU $FOOE Print a cr followed by a 1f.
F@1@ PSTRNG EQU $F010 PCRLF followed by PDATAL.
F@12 INIT EQU $FO12 Init active device.
F@14 DELAY EQU $FO14 Delay for (XREG) m/S.
F@16 BADDR EQU $F016 Get a four digit hex address into X.
FO18 BYTE EQU $F018 Get a two hex digit number into A.
FO1A INHEX EQU $FO1A Get a one digit hex char into A.
FO1C OUT2H EQU $FO1C Output two hex chars pointed to by X.
FO1E OUT2HS EQU $FO1E OUT2H plus a space.
F@20 OUT4HS EQU $F020 Output four hex chars etc.
F@22 OUTHR EQU $F022 Output right hex digit in A.
FO24 OUTHL EQU $F024 Output left hex digit in A.
F@26 OUTS EQU $F026 Output a space.
F@28 RANDOM EQU $F028 Returns a random number in the range 0-255.
FO2A PRINTA EQU $FO2A Print the contents of A.
F@2C PRINTX EQU $F02C Print the contents of X.
FO2E READ EQU $FO2E Read sector.
FO3@ WRITE EQU $F030 Write sector.
F@32 VERIFY EQU $F032 Verify sector.
F@34 RST EQU $F034 Restore to track 00.
F036 DRV EQU $F036 Select drive.
F@38 CHKRDY EQU $F038 Check for drive ready.
FO3A QUICK EQU $FO3A Quick check for drive ready.
F@3C DINIT EQU $F03C Drive cold start.
FO3E WARM EQU $FO3E Drive warm start.
FQ40 SEEK EQU $F040 Seek to track.
F@42 GETTIM EQU $F042 Get time string from RTC.
Fo44 PUTTIM EQU $F0O44 Put time string to RTC.
F@46 GETRTC EQU $F046 Get a byte from the RTC.
F@48 PUTRTC EQU $FO48 Put a byte to the RTC.
FO4A BEEP EQU $FO4A Sound a 100ms tone.
FQ4C GCOM EQU $FO4C Send command to GDC.
FO4E GPRM EQU $FO4E Send parameter to GDC.
FO50 GPRMI EQU $FO50 Get parameter from GDC.
F@52 MASK EQU $F052 Load mask register.
F@54 SETPEN EQU $FO54 Define drawing mode.
F@56 SETPAT EQU $FO56 Define graphics pattern.
F@58 FIGSF EQU $F058 Start figure drawing.
FO5A FIGSG EQU $FOSA Start graphics drawing.
FO5C SETPAR EQU $FO5C Define display partitions.
FOSE SETCRG EQU $FOS5E Set graphics cursor.
FO6@ GETCRG EQU $F060 Get graphics cursor.
F@62 SETCRT EQU $F062 Set text cursor.
FO64 GETCRT EQU $F064 Get text cursor.
FO66 OFF EQU $F066 Turn display off.
FO68 ON EQU $F068 Turn display on.
FO6A GRAPH EQU $FOOA Set display to graphics.
FO6C TEXT EQU $F06C Set display to text
FO6E MODE EQU $FOGE Set GDC mode.

Page 53

Microbox 2K2 User Guide Version 0.95 10th May 2023

FQ70 ZOOM EQU $FO70 Set zoom factors.
FO72 FILL EQU $FO72 Area fill routine.
FO74 CLEARX EQU $FO74 Clear X words of display memory.
FO76 CLEARG EQU $F076 Clear graphics display.
FO78 CLEART EQU $FO78 Clear text display.
FO7A GDCINIT EQU $FO7A Initialise GDC.
F@7C GDCOUT EQU $FO7C Output a character.
FO7E INKEY EQU $FO7E Get a character from the keyboard.
FO8@ POINT EQU $F0O80 Plot a point.
F@82 LINE EQU $F082 Plot a line.
F@84 RECT EQU $F0O84 Plot a rectangle.
F@86 CIRCLE EQU $F086 Plot a circle.
FO88 ARC EQU $F088 Plot an arc
FO8A CLINK EQU $FO8A Link text parameters.
FO8C SYNC EQU $FO8C Sync to vertical blanking.
*
* the following routines were not in the MB2 ROM.
FO8E TOUPP EQU $FOSE convert ASCII char to upper case
F@90 BCD2B EQU $F090 convert BCD value to binary
F@92 BIN2B EQU $F092 convert binary value to BCD
*
FOA@ SCHAR EQU $FOAQ FLEXNet driver send char
FOA2 RCHAR EQU $FOA2 FLEXNet driver receive char

*
*

DE80 ORG (RAM+128)

DE80Q BUFFER RMB 256 Floppy interface sector buffer.
DF80 STACK RMB 2 User system stack.

DF82 NMIV RMB 2 NMI interrupt vector.
DF84 IRQV RMB 2 IRQ interrupt vector.
DF86 FIRQV RMB 2 FIRQ interrupt vector.
DF88 SWI2V RMB 2 SWI2 interrupt vector.
DF8A SWI3V RMB 2 SWI3 interrupt vector.
DF8C IPORT RMB 1 Active input port.

DF8D OPORT RMB 1 Active output port.
DF8E DRIVE RMB 1 Format drive value.
DF8F TRACK RMB 1 Format track value.
DF90 SECTOR RMB 1 Format sector value.
DF91 TEMP RMB 1

DF92 XTEMP ~ RMB 2

DF94 YTEMP RMB 2

DF96 TTO RMB 2

DF98 RNDM RMB 4 Random number storage.
DF9C WARMS RMB 1 Warm start flag.

DFID DDSTAB RMB 4 Disc driver type table.
DFA1 REAVEC RMB 2 Disc driver jump table.
DFA3 WRIVEC RMB 2

DFA5 VERVEC RMB 2

DFA7 RSTVEC RMB 2

DFA9 DRVVEC RMB 2

DFAB CHKVEC RMB 2

DFAD QUIVEC RMB 2

DFAF INIVEC RMB 2

DFB1 WARVEC RMB 2

DFB3 SEEVEC RMB 2

DFB5 RTCFAIL RMB 1 RTC fail flag.

DFB6 CURDRV RMB 1 Active floppy drive.
DFB7 XCOORD RMB 2 Cursor X value.

DFB9 YCOORD RMB 2 Cursor Y Value.

DFBB PART1 RMB 4 Display partition one.
DFBF PART2 RMB 4 Display partition two.
DFC3 GPARAM RMB 8 Parameter ram contents.
DFCB GMODE RMB 1 GDC mode register contents.
DFCC GZOOM RMB 1 Display + write zoom values.
DFCD GFIGS RMB 1 Figs 1st parameter value.
DFCE DC RMB 2

DFD@ D RMB 2

DFD2 D2 RMB 2

DFD4 D1 RMB 2

Page 54

Microbox 2K2 User Guide

DFD6
DFD8
DFD9
DFDA
DFDB
DFDC
DFDD
DFDE
DFDF
DFEQ@
DFE1
DFE2
DFE3
DFE5
DFE7
DFE9
DFEA
DFEB
DFEC
DFEE
DFFO@
DFF2
DFF4
DFF5
DFF6
DFF?7
DFF8
DFF9
DFFA

DFFB
DFFD
DFFE

Page 55

FFoQ
FFO1
FFO2
FFO3

FFO8
FFO9
FFo4
FFOS
FFoC
FFD

FF10
FF11
FF12
FF13

FF14
FF15

FF18
FF19

FF20
FF21
FF22
FF23

FF30
FF31
FF32

DM
CONST
ROW
coL
MAXCOL
MAXROW
cco
CROW
BCOL
BROW
ATTRI
CSPACE
CHARTAB
CURSOR
OFFSET
CZOOM
CTYPE
ESCFLG
TS1
TS2
TL1
TL2
DEN
DEN1
STEP
STEPO
SPEED
FLASH
CFLAG

*

RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB
RMB

PR RPRRPRPRPRNNNNRRPRNNNRRRPRRRERREPRPRRRERRN

Version 0.95 10th May 2023

Text cursor position.

* the following were not in the MB2 ROM.

FLEXNet driver checksum

saved instruction byte from breakpoint
promdisk write protect flag (@ = protected)

CHKSUM
BRKPNT
PDWPRT

*

RMB
RMB
RMB

2
1
1

* Hardware device equates.
Keyboard register.

Pia side a control register.
System control register.

Pia side b control register.

KEYREG
PIACA
SYSREG
PIACB
*
ACIAD1
ACIAC1
ACIADZ
ACIAC2
BAUD1
BAUD2
*
COMREG
TRKREG
SECREG
DATREG
*
GDCPRM
GDCCOM
*
RTCADD
RTCDAT

*

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU

EQU
EQU

$FFOQ
$FFO1
$FFO2
$FFO3

$FFo8
$FFO9
$FFo4
$FF@S
$FFOC
$FFeD

$FF10
$FF11
$FF12
$FF13

$FF14
$FF15

$FF18
$FF19

* ramdisk controller

RCOMRG
RTRKRG
RSECRG
RDATRG

*

EQU
EQU
EQU
EQU

$FF20
$FF21
$FF22
$FF23

Acia
Acia
Acia
Acia
Acia
Acia

Fdc
Fdc
Fdc
Fdc

Gdc
Gdc

Rtc
Rtc

register

port
port
port
port
port
port

]
Q
1
1
Q
1

data register.
control register.
data register.
control register.
baud rate register.
baud rate register.

command register.
track register.
sector register.
data register.

command register.
parameter register.

address register.
data register.

S

* promdisk controller registers

ECOMRG
ETRKRG
ESECRG

EQU
EQU
EQU

$FF30
$FF31
$FF32

Microbox 2K2 User Guide

2.2 -

FF33

0000
0010
0084
00A4

0058
0010
001C
005C
0018
0002
0001

FLEX1ink

Page 56

Co80
CCoo
CCoB
ccac
CCoE
CCoF
CC10
CC2B

CDoo
Cbo3
CDo6
CD4B
CD4E
Cbo9
CbacC
CDoF
cb12
D15
cb18
CD1B
CD1E
cbz21
CD24
cb27
CD2A
Ccb2D
CD30
b33
D39
Cb3C
CD45
CD3F

EDATRG EQU $FF33

*

* disk controller commands
RSCMD EQU $00

SECMD EQU $10

RECMD EQU $84

WRCMD EQU $A4

*

* Floppy disk controller status bits
RSMASK EQU $58

SEMASK EQU $10

REMASK EQU $1C

WRMASK EQU $5C

VEMASK EQU $18

DRQ EQU $2

BUSY EQU $1

*
sk ok sk sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok sk sk ok sk ok sk ok ok ok ok sk ok sk ok sk ok ok sk ok sk ok sk ok ok sk ok ok

* This file contains the subroutine and

* storage location equates for FLEX. To

* use this file insert the following lines
* of code in your program :-

* OPT NOL

* LIB FLEXLINK

* OPT LIS

* For details of the routines and *

* parameters see the FLEX programmers guide *
3k 3k 3k 3k 3k 3k 3k ok 3k ok ok 3k sk sk sk sk sk sk 3k sk sk ok sk ok sk ok sk sk sk sk sk 3k 3k ok sk sk ok ok ok 3k sk ok sk kK

* Ok ¥ ¥ ¥ ¥ ¥

*

* Storage locations.
LINBUF EQU $C080 Line buffer start.

Version 0.95 10th May 2023

TTYBS EQU $CCo0 TTYSET backspace character.

SYSDRV EQU $CCoB System drive number.
WRKDRV EQU $Ccac Working drive number.
MONTH EQU $CCOE FLEX system date.

DAY EQU $CCoF

YEAR EQU $CC10

MEMEND EQU $CC2B Memory end pointer.

*

* User callable routines.

FCOLD EQU $CD0O Cold start.

FWARM EQU $CDO3 Warm start.

RENTER EQU $CDo6 Main loop entry point.
DOCMND EQU $CD4B Call dos as a subroutine.
STAT EQU $CD4E Check terminal status.
FINCH EQU $CDO9 Input character.

INCH2 EQU $CbaC Input character switched.
FOUTCH EQU $CDOF Output character.

OUTCHZ2 EQU $CD12 Output character switched.
GETCHR EQU $CD15 Get a char (main routine).
PUTCHR EQU $CD18 Put a char (main routine).
INBUFF EQU $CD1B Input into line buffer.
FPSTRNG EQU $CD1E Print a char string.

CLASS EQU $CD21 Classify a char.

FPCRLF EQU $CD24 Print a crilf.

NXTCH EQU $CD27 Get next buffer char.
RSTIO EQU $CD2A Restore i/o vectors.
GETFIL EQU $CD2D Get file spec.

LOAD EQU $CD30 File loader.

SETEXT EQU $CD33 Set file extension.

OUTDEC EQU $CD39 Output decimal number.
OUTHEX EQU $CD3C Output hexadecimal number.
OUTADR EQU $CD45 Output hex address.

RPTERR EQU $CD3F Report error.

Microbox 2K2 User Guide Version 0.95 10th May 2023

(D42 GETHEX EQU $CD42 Get hexadecimal number.
(D48 INDEC EQU $CD48 Input decimal number.
*

* Monitor definitions and equates for the MB2K2.
EQ0® PROM EQU $EQ00 Eprom start address.
DEQ® RAM EQU $DE0O Scratch ram + stack space.
FFO@ IO EQU $FFO0Q I/0 base address.
DE6F SSTACK EQU (RAM+127-16) Top of system stack.
DF80 SCRAT EQU (RAM+384) Start of scratch space.
*
* User callable subroutines. Use indirect JSR's to call.
FOO@ RESET EQU $F000 Cold start.
F@@2 CONTRL EQU $F002 Warm start.
FO@4 INCH1 EQU $F0O04 Input char without an echo .
FOO6 INCH EQU $F006 Input char .
FO@8 STATUS EQU $F008 Check for char.
FOOA OUTCH EQU $FO0A Output char.
FOOC PDATA1 EQU $FoQC Print string terminated by hex(04).
FOOE PCRLF EQU $FOOE Print a cr followed by a 1f.
FO1@ PSTRNG EQU $FO10 PCRLF followed by PDATA1.
Fo12 INIT EQU $F012 Init active device.
F@14 DELAY EQU $FO14 Delay for (XREG) m/S.
F@l6 BADDR EQU $FOl6 Get a four digit hex address into X.
Fo018 BYTE EQU $F018 Get a two hex digit number into A.
FO1A INHEX EQU $FO1A Get a one digit hex char into A.
FO1C OUT2H EQU $FO1C Output two hex chars pointed to by X.
FQ1E OUT2HS EQU $FOLE OUT2H plus a space.
F@20 OUT4HS EQU $F020 Output four hex chars etc.
F@22 OUTHR EQU $F022 Output right hex digit in A.
F@24 OUTHL EQU $F024 Output left hex digit in A.
F@26 OUTS EQU $F026 Output a space.
F@28 RANDOM EQU $F028 Returns a random number in the range 0-255.
FO2A PRINTA EQU $FO2A Print the contents of A.
F@2C PRINTX EQU $F02C Print the contents of X.
FOZ2E READ EQU $FO2E Read sector.
F@30 WRITE EQU $F030 Write sector.
F@32 VERIFY EQU $F032 Verify sector.
F@34 RST EQU $F0O34 Restore to track 00.
F@36 DRV EQU $F036 Select drive.
F@38 CHKRDY EQU $F038 Check for drive ready.
FO3A QUICK EQU $FO3A Quick check for drive ready.
F@3C DINIT EQU $FO3C Drive cold start.
FO3E WARM EQU $FO3E Drive warm start.
FO40 SEEK EQU $F040 Seek to track.
F@42 GETTIM EQU $FQ42 Get time string from RTC.
Fo44 PUTTIM EQU $F044 Put time string to RTC.
FO46 GETRTC EQU $F046 Get a byte from the RTC.
F@48 PUTRTC EQU $FO48 Put a byte to the RTC.
FQ4A BEEP EQU $FO4A Sound a 100ms tone.
Fo4C GCOM EQU $F04C Send command to GDC.
FQ4E GPRM EQU $FO4E Send parameter to GDC.
F@50 GPRMI EQU $F050 Get parameter from GDC.
F@52 MASK EQU $FO52 Load mask register.
F@54 SETPEN EQU $FO54 Define drawing mode.
F@56 SETPAT EQU $F056 Define graphics pattern.
F@58 FIGSF EQU $FO58 Start figure drawing.
FO5A FIGSG EQU $FO5A Start graphics drawing.
FO5C SETPAR EQU $FO5C Define display partitions.
FOSE SETCRG EQU $FOSE Set graphics cursor.
FO6@ GETCRG EQU $F060 Get graphics cursor.
F@62 SETCRT EQU $F062 Set text cursor.
FO64 GETCRT EQU $F0O64 Get text cursor.
FO66 OFF EQU $F066 Turn display off.
F068 ON EQU $F068 Turn display on.
FO6A GRAPH EQU $FO6A Set display to graphics.
FO6C TEXT EQU $F06C Set display to text
FOGE MODE EQU $FOGE Set GDC mode.
FO70 ZOOM EQU $FO70 Set zoom factors.
Fo72 FILL EQU $F072 Area fill routine.

Page 57

Microbox 2K2 User Guide

Page 58

Fo74
Fo76
Fo78
Fo7A
Fo7C
FO7E
Fo80
Fo82
Fo84
Fo86
Fo88
FO8A
Fo8C

FOSE
Fo90
F@92

FoAQ
FOA2

CLEARX
CLEARG
CLEART
GDCINIT
GbcouT
INKEY
POINT
LINE
RECT
CIRCLE
ARC
CLINK
SYNC

*

* the following routines

TOUPP
BCDZB
BINZB
*

SCHAR
RCHAR

*

EQU $Fo74
EQU $FO76
EQU $FO78
EQU $FO7A
EQU $FO7C
EQU $FO7E
EQU $F080
EQU $FO82
EQU $Fo84
EQU $F086
EQU $F88
EQU $FO8A
EQU $F@8C
EQU $FOSE
EQU $F090
EQU $FO92
EQU $FOAQ
EQU $FoA2

Version 0.95 10th May 2023

Clear X words of display memory.
Clear graphics display.

Clear text display.

Initialise GDC.

Output a character.

Get a character from the keyboard.
Plot a point.

Plot a line.

Plot a rectangle.

Plot a circle.

Plot an arc

Link text parameters.

Sync to vertical blanking.

were not in the MB2 ROM.

convert ASCII char to upper case
convert BCD value to binary
convert binary value to BCD

FLEXNet driver send char
FLEXNet driver receive char

Microbox 2K2 User Guide Version 0.95 10th May 2023

Appendix 3 - PS/2 keyboard mapping

// Keyboard mapping for PS-2 keyboard and MB2K2.
// First dataset, shift = @, shiftlock = @
0x00 //Scancode = $00

,0x05 //Scancode = $01 F9 CEDRIC - delete char

,0x00 //Scancode = $02

,0x19 //Scancode = $03 F5 CEDRIC - cut

,OXQE //Scancode = $04 F3 CEDRIC - search and replace
,0x03 //Scancode = $05 F1 CEDRIC - search forward
,0x1A //Scancode = $06 F2 CEDRIC - search back

,0x08 //Scancode = $07 F12 CEDRIC - delete left (backspace)
,0x00 //Scancode = $08

,0x17 //Scancode = $09 F10 CEDRIC - delete word

,0x13 //Scancode = $0A F8 CEDRIC -

,0x10 //Scancode = $0B F6 CEDRIC - paste

,0x01 //Scancode = $0C F4 CEDRIC - global replace

,0x09 //Scancode = $@D Tab
, //Scancode = $0E)
,0x00 //Scancode = $0F

,0x00 //Scancode = $10
,0x00 //Scancode = $11
,0x00 //Scancode = $12
,0x00 //Scancode = $13
,0x00 //Scancode = $14

,'q’ //Scancode = $15 q
,'1 //Scancode = $16 1
,0x00 //Scancode = $17

,0x00 //Scancode = $18

,0x00 //Scancode = $19

,'z! //Scancode = $1A z
,'s! //Scancode = $1B s
,'a' //Scancode = $1C a
,'w! //Scancode = $1D w
,'2" //Scancode = $1E 2
,0x00 //Scancode = $1F

,0x00 //Scancode = $20

,'c! //Scancode = $21 C
,'x! //Scancode = $22 X
,'d' //Scancode = $23 d
,'e! //Scancode = $24 e
,'4" //Scancode = $25 4
'3 //Scancode = $26 3

,0x00 //Scancode = $27
,0x00 //Scancode = $28
s //Scancode = $29 Space

,'v! //Scancode = $2A v
, ' //Scancode = $2B f
't //Scancode = $2C t
,'r! //Scancode = $2D r
,'5! //Scancode = $2E 5
,0x00 //Scancode = $2F

,0x00 //Scancode = $30

,'n' //Scancode = $31 n
,'b’ //Scancode = $32 b
,'h’ //Scancode = $33 h
,'g’ //Scancode = $34 g
'y //Scancode = $35 y
,'6" //Scancode = $36 6
,0x00 //Scancode = $37

,0x00 //Scancode = $38

,0x00 //Scancode = $39

,'m' //Scancode = $3A m
'3 //Scancode = $3B j
,'u’ //Scancode = $3C u
L7 //Scancode = $3D 7

Page 59

Microbox 2K2 User Guide

Page 60

//Scancode
//Scancode

//Scancode

//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode

//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode

//Scancode

//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode

//Scancode

//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode

$3E
$3F

$40
$41
$42
$43
$44
$45
$46

= $47
//Scancode =
//Scancode =

$48
$49
$4A
$4B
$4C
$4D
$4E
$4F

$50
$51
$52
$53
$54
$55
$56
$57
$58
$59
$5A
$5B
$5C
$5D
$5E
$5F

$60
$61
$62
$63
$64
$65
$66
$67
$68
$69
$6A
$68B
$6C
$6D
$6E
$6F

$70
$71
$72
$73

= $74

$75
$76
$77
$78
$79
$7A
$7B
$7C
$7D
$7E

8

)

k

i

o

(/]

9

/

1

p

L

Enter

]

backslash
Backspace

KP1 CEDRIC
KP4 CEDRIC
KP7 CEDRIC
KP@

KP.

KP2 CEDRIC
KP5 CEDRIC
KP6 CEDRIC
KP8 CEDRIC
Escape

F11 CEDRIC
KP+

KP3 CEDRIC
KP-

KP*

KP9 CEDRIC

Version 0.95 10th May 2023

move to line end

move cursor left
(Tab)

move cursor down
point here

move cursor right
move cursor up

delete line

move one line forward

line back

Microbox 2K2 User Guide

,0x00 //Scancode = $7F

// Second dataset, shift = 0, shiftlock =1

,0x00
,0x05
,0x00
,0x19
,0x0E
,0x03
,0x1A
,0x08
,0x00
,0x17
,0x13
,0x10
,0x01
,0x09

,0x00

,0x00
,0x00
,0x00
,0x00
,0x00
,'Q’
)'1'
,0x00
,0x00
,0x00
7‘2‘
,'S!
)'A'
7‘w‘
;2
,0x00

,0x00
)'C'
7‘X‘
0"
)'E'
7‘4‘
E)
,0x00
,0x00
)'V'
7‘F‘
)T
)'R'
7‘5‘
,0x00

,0x00
S
Sg
S
TG
Sy
Tgr
,0x00
,0x00
,0x00
S
REL
S
i
Lige

Page 61

//Scancode

//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =

//Scancode

//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode

//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =

//Scancode

//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode

//Scancode

//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
= $2B

//Scancode

//Scancode =

//Scancode
//Scancode
//Scancode

//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =

//Scancode

//Scancode =

//Scancode

$00
$01
$02
$03
$04
$05
$06
$o7
$08

= $09

$0A
$0B
$acC
$oD
$0E
$OF

$10
$11
$12
$13
$14
$15
$16
$17
$18
$19

= $1A

$1B
$1C
$1D
$1E
$1F

$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$2A

$2¢
$2D
$2E
$2F

$30
$31
$32
$33
$34
$35
$36
$37
$38
$39
$3A
$3B

= $3C

$3D
$3E

F9

F5
F3
F1
F2
F12

F10
F8
F6
F4
Tab

N=>»unN

W hmo XN

Space

O <o I W™= u T <<

o NC WX

CEDRIC

CEDRIC
CEDRIC
CEDRIC
CEDRIC
CEDRIC

CEDRIC
CEDRIC
CEDRIC
CEDRIC

delete

cut

search
search
search
delete

delete

paste
global

Version 0.95 10th May 2023

char

and replace
forward

back

left (backspace)

word

replace

Microbox 2K2 User Guide

Page 62

//Scancode

//Scancode

//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
= $4A

//Scancode

//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode

//Scancode

//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
= $5B

//Scancode

//Scancode =

//Scancode
//Scancode
//Scancode

//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =

//Scancode

//Scancode =

//Scancode
//Scancode

//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =

//Scancode

//Scancode =

//Scancode

$3F

$40
$41
$42
$43
$44
$45
$46
$47
$48
$49

$4B
$4C
$4D
$4E
$4F

$50
$51
$52
$53
$54
$55
$56
$57
$58
$59
$5A

$5C
$5D
$5E
$5F

$60
$61
$62
$63
$64
$65
$66
$67
$68
$69
$6A
$68B

= $6C

$6D
$6E
$6F

$70
$71
$72
$73
$74
$75
$76
$77
$78
$79
$7A
$78
$7C

= $7D

$7E
$7F

K

I

0

0

9

/

L

p

L

Enter

]

backslash
Backspace

KP1 CEDRIC
KP4 CEDRIC
KP7 CEDRIC
KPQ

KP.

KP2 CEDRIC
KP5 CEDRIC
KP6 CEDRIC
KP8 CEDRIC
Escape

F11 CEDRIC
KP+

KP3 CEDRIC
KP-

KP*

KP9 CEDRIC

Version 0.95 10th May 2023

move to line end

move cursor left
(Tab)

move cursor down
point here

move cursor right
move cursor up

delete line

move one line forward

line back

Microbox 2K2 User Guide

//Third dataset, shift = 1, shiftlock = @

,0x00
,0x05
,0x00
,0x19
, Ox0E
,0x03
,0x1A
,0x08
,0x00
,0x17
,0x13
,0x10
,0x01
,0x09

,0x00

,0x00
,0x00
,0x00
,0x00
,0x00
7‘Q‘
'
,0x00
,0x00
,0x00
)'Z'
7‘5‘
, AT
,'W'
7‘@‘
,0x00

,0x00
e
Sy
S
g
’l$l
S
,0x00
,0x00
Ly
s
o
LR
g
,0x00

,0x00
S
Tpr
g
TG
Ty
A
,0x00
,0x00
,0x00
S
SEL
S
Ly
e

,0x00

Page 63

//Scancode

//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =

//Scancode

//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode

//Scancode

//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
= $1B

//Scancode

//Scancode =

//Scancode
//Scancode
//Scancode

//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
= $2C

//Scancode

//Scancode =

//Scancode
//Scancode

//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =

//Scancode

//Scancode =

//Scancode

$00
$o1
$02
$03
$04
$05
$06
$07
$08
$09

= $0A

$oB
$acC
$oD
$0E
$oF

$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A

$1C
$1D
$1E
$1F

$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$2A
$2B

$2D
$2E
$2F

$30
$31
$32
$33
$34
$35
$36
$37
$38
$39
$3A
$3B
$3C

= $3D

$3E
$3F

F9

F5
F3
F1
F2
F12

F10
F8
F6
F4
Tab

®=> 0N

FHF AM O XN

> <o I W=

¥R C L=

CEDRIC

CEDRIC
CEDRIC
CEDRIC
CEDRIC
CEDRIC

CEDRIC
CEDRIC
CEDRIC
CEDRIC

delete

cut

search
search
search
delete

delete

paste
global

Version 0.95 10th May 2023

char

and replace
forward

back

left (backspace)

word

replace

Microbox 2K2 User Guide

,0x00

Page 64

//Scancode

//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
= $4B

//Scancode

//Scancode =

//Scancode
//Scancode
//Scancode

//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =

//Scancode

//Scancode =

//Scancode
//Scancode

//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =

//Scancode

//Scancode =

//Scancode

//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
= $7E

//Scancode
//Scancode

$40
$41
$42
$43
$44
$45
$46
$47
$48
$49
$4A

$4c
$4D
$4E
$4F

$50
$51
$52
$53
$54
$55
$56
$57
$58
$59
$5A
$5B

= $5C

$5D
$5E
$5F

$60
$61
$62
$63
$64
$65
$66
$67
$68
$69
$6A
$68B
$6C

= $6D

$6E
$6F

$70
$71
$72
$73
$74
$75
$76
$77
$78
$79
$7A
$7B
$7¢
$7D

$7F

<

K

I

0

D)

(

>

?

L

p

{

+

Enter

}

|

Backspace

KP1 CEDRIC
KP4 CEDRIC
KP7 CEDRIC
KP@

KP.

KP2 CEDRIC
KP5 CEDRIC
KP6 CEDRIC
KP8 CEDRIC
Escape

F11 CEDRIC
KP+

KP3 CEDRIC
KP-

KP*

KP9 CEDRIC

Version 0.95 10th May 2023

move to line end

move cursor left
(Tab)

move cursor down
point here

move cursor right
move cursor up

delete line

move one line forward

line back

Microbox 2K2 User Guide

//Fourth dataset, shift = 1, shiftlock = 1

,0x00
,0x05
,0x00
,0x19
, Ox0E
,0x03
,0x1A
,0x08
,0x00
,0x17
,0x13
,0x10
,0x01
,0x09

>

,0x00

,0x00
,0x00
,0x00
,0x00
,0x00
,'q"

7‘!‘

,0x00
,0x00
,0x00

Page 65

//Scancode

//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =

//Scancode
//Scancode
//Scancode

//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode

//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode

//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =

//Scancode

$00
$01
$02
$03
$04
$05
$06
$o7
$08

= $09
//Scancode =
//Scancode =

$0A
$0B
$oc
$eD
$0E
$oF

$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1C
$1D
$1E
$1F

$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$2A
$2B
$2C
$2D
$2E
$2F

$30
$31
$32
$33
$34
$35

= $36

$37
$38
$39
$3A
$3B
$3C
$3D
$3E
$3F

F9

F5
F3
F1
F2
F12

F10
F8
Fo6
F4
Tab

® = Q9 0w N

HF A DO QX N

Space

R I A+ <

><K Q@ o >

* @0 C . 3

CEDRIC

CEDRIC
CEDRIC
CEDRIC
CEDRIC
CEDRIC

CEDRIC
CEDRIC
CEDRIC
CEDRIC

delete

cut

search
search
search
delete

delete

paste
global

Version 0.95 10th May 2023

char

and replace
forward

back

left (backspace)

word

replace

Microbox 2K2 User Guide

,0x00

Page 66

//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =

//Scancode
//Scancode

//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode

//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =

//Scancode

//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =
//Scancode =

//Scancode
//Scancode
//Scancode
//Scancode
//Scancode
//Scancode

//Scancode =
//Scancode =

//Scancode

$40
$41
$42
$43
$44
$45
$46
$47
$48
$49

= $4A
//Scancode =
//Scancode =

$4B
$4C
$4D
$4E
$4F

$50
$51
$52
$53
$54
$55
$56
$57
$58
$59
$5A
$5B
$5C
$5D
$5E
$5F

$60
$61
$62
$63
$64
$65
$66
$67
$68
$69
$6A
$68B
$6C
$6D
$6E
$6F

$70
$71
$72
$73
$74
$75
$76

= $77

$78
$79
$7A
$7B
$7C
$7D
$7E
$7F

<

k

i

o

D)

(

>

?

1

p

{

+

Enter

3

I

Backspace

KP1 CEDRIC
KP4 CEDRIC
KP7 CEDRIC
KP@

KP.

KP2 CEDRIC
KP5 CEDRIC
KP6 CEDRIC
KP8 CEDRIC
Escape

F11 CEDRIC
KP+

KP3 CEDRIC
KP-

KP*

KP9 CEDRIC

Version 0.95 10th May 2023

move to line end

move cursor left
(Tab)

move cursor down
point here

move cursor right
move cursor up

delete line

move one line forward

line back

Microbox 2K2 User Guide Version 0.95 10th May 2023

Appendix 4 - Graphics display codes

The graphics display code provides a simple way to generate

pictures using the internal graphics drivers. Here is an example
display list:-

OPT NOL

LIB GRAPHICS.MAC

OPT LIS

£ 3

CLEAR_SCREEN
SET_PEN_TYPE @, $FFFF
MOVE_CURSOR 100,100
PLOT_LINE 200,200
PLOT_TEXT 'HI THERE!'
END_DRAW

*
END

This 1list should be assembled with ASMB in the normal manner,

placed into memory using GET, and then the FLEX PLAY command should
be used to draw the picture.

The graphics display codes are three byte 'opcodes' defined the

macro set GRAPHICS.MAC. The available commands are :-

Page 67

NULL
Do nothing.

CLEAR_SCREEN
Clear the graphics screen.

MOVE_CURSOR x-coord,y-coord
Moves the cursor to the given coords.

PLOT_POINT x-coord,y-coord
Plots a point at the given coords.

PLOT_LINE x-coord,y-coord
Plots a 1ine from the present cursor position to the
given coords.

PLOT_RECTANGE sidex,sidey
Plots a rectangle (bottom rh corner is present coords),
with given sides.

PLOT_CIRCLE radius
Plots a circle (centre is present coords) with given
radius where (@<radius<127).

Microbox 2K2 User Guide Version 0.95 10th May 2023
PLOT_TEXT 'text string'
Plots the text string from the given coords.

SET_PEN_TYPE pen_type,profile
Sets the pen type and drawing profile.

SET_TEXT_ZOOM zoom_factor
Sets the text size (@<zoom_factor<15)

END_DRAW
Ends the drawing process.

Page 68

Microb

ox 2K2 User Guide

Appendix 5 - Default display character set

// thi
ch
// cha
84
24
7:
11
9,
12
47
11

//

’

Page 69

s array contains the CHARS1.CHR character set
ar charSet[1086] = {
racter set attributes
, // screen chars/row
, // screen rows
// char x pixels
, // char y rows
// bounding box pixels
, // bounding box rows
// initial attributes
// char spacing (pixels)

character set patterns
0b0000000d //Character = " '
0b00000000
0b00000000
0b00000000
0b00000000
0b00000000
0b00000000
0b00000000
0b00000000
0b00000000
0b00000000

0b00001000 //Character = "!"
0b00001000
0b00001000
0b00001000
0b00001000
0b00000000
0b00001000
0b00001000
0b00000000
0b0000000d
0b00000000

0b00100100 //Character = ""'
0b00100100
0b00100100
0b00000000
0b00000000
0b00000000
0b00000000
0b00000000
0b00000000
0b00000000
0b00000000

0b00010100 //Character = "#'
0b00010100
0b00010100
0b01111111
0b00010100
0b01111111
0b00010100
0b00010100
0b00010100
0b00000000
0b00000000

Version 0.95 10th May 2023

Microbox 2K2 User Guide Version 0.95 10th May 2023

, 0b00001000 //Character = '$'
, 0b00111111
, 0b01001000
, 0b01001000
, 0b00111110
, 0b00001001
, 0b00001001
, 0b01111110
, 0b00001000
, 0b00000000
, 0b000000V0D

, 0b00100000 //Character = '%'
, 0b01010001
, 0b00100010
, 0b00000100
, 0b00001000
, 0b00010000
, 0b00100010
, 0b01000101
, 0b00000010
, 0b00000000
, 0b000000V0D

, 0b00111000 //Character = '&'
, 0b01000100
, 0b01000100
, 0b00101000
, 0b00010000
, 0b00101001
, 0b01000110
, 0b01000110
, 0b00111001
, 0b00000000
, 0b000000V0D

, 0b00001100 //Character = "'’
, 0b00001100
, 0b00001000
, 0b00010000
, 0b00000000
, 0b000000V0D
, 0b00000000
, 0b00000000
, 0b000000V0D
, 0b00000000
, 0b00000000

, 0b00000100 //Character = '('
, 0b00001000
, 0b00010000
, 0b00010000
, 0b00010000
, 0b00010000
, 0b00010000
, 0b00001000
, 0b00000100
, 0b00000000
, 0b00000000

Page 70

Microbox 2K2 User Guide

Page 71

0b00010000 //Character = ')’

0b00001000
0b00000100
0b00000100
0b00000100
0b00000100
0b00000100
0b00001000
0b00010000
0b00000000
0b00000000

0b00000000
0b00001000
0b01001001
0b00101010
0b01111111
0b00101010
0b01001001
0b00001000
0b00000000
0b00000000
0b00000000

0b00000000
0b00001000
0b00001000
0b00001000
0b01111111
0b00001000
0b00001000
0b00001000
0b00000000
0b0000000d
0b00000000

0b0000000d
0b00000000
0b00000000
0b0000000d
0b00000000
0b00000000
0b0000000d
0b00011000
0b00011000
0b00010000
0b00100000

0b0000000d
0b00000000
0b00000000
0b0000000d
0b00111110
0b00000000
0b0000000d
0b00000000
0b00000000
0b0000000d
0b00000000

//Character =

//Character =

//Character =

//Character =

V7

v

v
>

v

+

v

v

v

Version 0.95 10th May 2023

Microbox 2K2 User Guide Version 0.95 10th May 2023

, 0b000VVVVd //Character = 'fred'
, 0b00000000
, 0b0000V00d
, 0b00000000
, 0b00000000
, 0b0000V00d
, 0b00000000
, 0b00011000
, 0b00011000
, 0b00000000
, 0b00000000

, 0b0000VVd //Character = '/’
, 0b000000VA1
, 0b00000010
, 0b00000100
, 0b00001000
, 0b00010000
, 0b00100000
, 0b01000000
, 0b000000V00
, 0b00000000
, 0b00000000

, 0b00111110 //Character = '@’
, 0b01000001
, 0b01000011
, 0b01000101
, 0b01001001
, 0b01010001
, 0b01100001
, 0b01000001
, 0b00111110
, 0b00000000
, 0b000000V0D

, 0b00001000 //Character = "1’
, 0b00011000
, 0b00101000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00111110
, 0b00000000
, 0b000000V0D

, 0b00111110 //Character = '2'
, 0b01000001
, 0b000000VA1
, 0b00000010
, 0b00011100
, 0b00100000
, 0b01000000
, 0b01000000
, 0b01111111
, 0b00000000
, 0b000000V0D

Page 72

Microbox 2K2 User Guide Version 0.95 10th May 2023

, 0b00111110 //Character = '3’
, 0b01000001
, 0b000000A1
, 0b00000001
, 0b00011110
, 0b000000A1
, 0b00000001
, 0b01000001
, 0b00111110
, 0b00000000
, 0b000000V0D

, 0b00000010 //Character = '4'
, 0b00000110
, 0b00001010
, 0b00010010
, 0b00100010
, 0b01000010
, 0b01111111
, 0b00000010
, 0b00000010
, 0b00000000
, 0b000000V0D

, 0b01111111 //Character = 'S5’
, 0b01000000
, 0b01000000
, 0b01111100
, 0b0O0010
, 0b000EA01
, 0b0E000001
, 0b01000010
, 0b00111100
, 0b0EOOOOR
, 0b0EOOAOD

, 0b00011110 //Character = '6'
, 0b00100000
, 0b01000000
, 0b01000000
, 0b01111110
, 0b01000001
, 0b01000001
, 0b01000001
, 0b00111110
, 0b00000000
, 0b000000V0D

, 0b@01111111 //Character = '7'
, 0b01000001
, 0b00000010
, 0b00000100
, 0b00001000
, 0b00010000
, 0b00010000
, 0b00010000
, 0b00010000
, 0b00000000
, 0b00000000

Page 73

Microbox 2K2 User Guide Version 0.95 10th May 2023

, 0b00111110 //Character = '8'
, 0b01000001
, 0b01000001
, 0b01000001
, 0b00111110
, 0b01000001
, 0b01000001
, 0b01000001
, 0b00111110
, 0b00000000
, 0b000000V0D

, 0b00111110 //Character = '9"
, 0b01000001
, 0b01000001
, 0b01000001
, 0b00111111
, 0b00A01
, 0b0E000001
, 0b0000010
, 0b00111100
, 0b0EOOOO0
, 0b0EOOAO0?

, 0b00000V0d //Character = ":'
, 0b00000000
, 0b0000V00d
, 0b00011000
, 0b00011000
, 0b0000V00d
, 0b00000000
, 0b00011000
, 0b00011000
, 0b00000000
, 0b00000000

, 0b00000Vdd //Character = ";'
, 0b00000000
, 0b00000000
, 0b00011000
, 0b00011000
, 0b00000000
, 0b00000000
, 0b00011000
, 0b00011000
, 0b00010000
, 0b00100000

, 0b00000100 //Character = '<'
, 0b00001000
, 0b00010000
, 0b00100000
, 0b01000000
, 0b00100000
, 0b00010000
, 0b00001000
, 0b00000100
, 0b00000000
, 0b00000000

Page 74

Microbox 2K2 User Guide Version 0.95 10th May 2023

//
, 0b00000V0d //Character = '="'
, 0b00000000
, 0b00000000
, 0b00111110
, 0b00000000
, 0b00111110
, 0b00000000
, 0b00000000
, 0b00000000
, 0b00000000
, 0b00000000

, 0b00010000 //Character = '>'
, 0b00001000
, 0b00000100
, 0b00000010
, 0b00000VA1
, 0b00000010
, 0b00000100
, 0b00001000
, 0b00010000
, 0b00000000
, 0b00000000

, 0b00011110 //Character = '?'
, 0b00100001
, 0b00100001
, 0b00000001
, 0b00000110
, 0b00001000
, 0b00001000
, 0b000000V0D
, 0b00001000
, 0b00000000
, 0b000000V0D

, 0b00011110 //Character = '@’
, 0b00100001
, 0b01001101
, 0b01010101
, 0b01010101
, 0b01011110
, 0b01000000
, 0b00100000
, 0b00011110
, 0b00000000
, 0b000000V0D

, 0b00011100 //Character = 'A'
, 0b00100010
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01111111
, 0b01000001
, 0b01000001
, 0b01000001
, 0b00000000
, 0b000000V0D

Page 75

Microbox 2K2 User Guide Version 0.95 10th May 2023

//
, 0b01111110 //Character = 'B'
, 0b00100001
, 0b00100001
, 0b00100001
, 0b00111110
, 0b00100001
, 0b00100001
, 0b00100001
, 0b01111110
, 0b00000000
, 0b000000V0D

, 0b00011110 //Character = 'C'
, 0b00100001
, 0b01000000
, 0b01000000
, 0b01000000
, 0b01000000
, 0b01000000
, 0b00100001
, 0b00011110
, 0b00000000
, 0b000000V0D

, 0b01111100 //Character = 'D'
, 0b01000010
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01000010
, 0b01111100
, 0b0000000R
, 0b0000000?

, 0b01111111 //Character = 'E'
, 0b01000000
, 0b01000000
, 0b01000000
, 0b01111000
, 0b01000000
, 0b01000000
, 0b01000000
, 0b01111111
, 0b00000000
, 0b000000V0D

, 0b01111111 //Character = 'F'
, 0b01000000
, 0b01000000
, 0b01000000
, 0b01111000
, 0b01000000
, 0b01000000
, 0b01000000
, 0b01000000
, 0b00000000
, 0b000000V0D

Page 76

Microbox 2K2 User Guide Version 0.95 10th May 2023

, 0b00011110 //Character = 'G'
, 0b00100001
, 0b01000000
, 0b01000000
, 0b01000000
, 0b01001111
, 0b01000001
, 0b00100001
, 0b00011110
, 0b00000000
, 0b000000V0D

, 0b01000001 //Character = 'H'
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01111111
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01000001
, 0b00000000
, 0b000000V0D

, 0b00111110 //Character = 'I'
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00111110
, 0b00000000
, 0b000000V0D

, 0b00011111 //Character = 'J'
, 0b000100
, 0b00100
, 0b0000100
, 0b000100
, 0b00100
, 0b0000100
, 0b01000100
, 0b00111000
, 0b0EOOOOR
, 0b0EOOAOD

, 0b01000001 //Character = 'K'
, 0b01000010
, 0b01000100
, 0b01001000
, 0b01010000
, 0b01101000
, 0b01000100
, 0b01000010
, 0b01000001
, 0b0000000R
, 0b0000000?

Page 77

Microbox 2K2 User Guide Version 0.95 10th May 2023

, 0b01000000 //Character = 'L’
, 0b01000000
, 0b01000000
, 0b01000000
, 0b01000000
, 0b01000000
, 0b01000000
, 0b01000000
, 0b01111111
, 0b00000000
, 0b000000V0D

, 0b01000001 //Character = 'M'
, 0b01100011
, 0b01010101
, 0b01001001
, 0b01001001
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01000001
, 0b00000000
, 0b000000V0D

, 0b01000001 //Character = 'N'
, 0b01100001
, 0b01010001
, 0b01001001
, 0b01000101
, 0b01000011
, 0b01000001
, 0b01000001
, 0b01000001
, 0b00000000
, 0b000000V0D

, 0b00011100 //Character = '0'
, 0b00100010
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01000001
, 0b00100010
, 0b00011100
, 0b00000000
, 0b000000V0D

, 0b01111110 //Character = 'P'
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01111110
, 0b01000000
, 0b01000000
, 0b01000000
, 0b01000000
, 0b00000000
, 0b000000V0D

Page 78

Microbox 2K2 User Guide Version 0.95 10th May 2023

, 0b00011100 //Character = 'Q'
, 0b00100010
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01001001
, 0b01000101
, 0b00100010
, 0b00011101
, 0b00000000
, 0b000000V0D

, 0b01111110 //Character = 'R’
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01111110
, 0b01001000
, 0b01000100
, 0b01000010
, 0b01000001
, 0b00000000
, 0b000000V0D

, 0b00111110 //Character = 'S’
, 0b01000001
, 0b01000000
, 0b01000000
, 0b00111110
, 0b000000VA1
, 0b00000001
, 0b01000001
, 0b00111110
, 0b00000000
, 0b000000V0D

, 0b@01111111 //Character = 'T'
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00000000
, 0b00000000

, 0b01000001 //Character = 'U'
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01000001
, 0b00111110
, 0b00000000
, 0b000000V0D

Page 79

Microbox 2K2 User Guide Version 0.95 10th May 2023

, 0b01000001 //Character = 'V'
, 0b01000001
, 0b01000001
, 0b00100010
, 0b00100010
, 0b00010100
, 0b00010100
, 0b00001000
, 0b00001000
, 0b00000000
, 0b000000V0D

, 0b01000001 //Character = 'W'
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01001001
, 0b01001001
, 0b01010101
, 0b01100011
, 0b01000001
, 0b00000000
, 0b000000V0D

, 0b01000001 //Character = 'X'
, 0b01000001
, 0b00100010
, 0b00010100
, 0b00001000
, 0b00010100
, 0b00100010
, 0b01000001
, 0b01000001
, 0b00000000
, 0b000000V0D

, 0b01000001 //Character = "Y'
, 0b01000001
, 0b00100010
, 0b00010100
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00000000
, 0b000000V0D

, 0b01111111 //Character = 'Z'
, 0b000000VA1
, 0b00000010
, 0b00000100
, 0b00001000
, 0b00010000
, 0b00100000
, 0b01000000
, 0b01111111
, 0b00000000
, 0b000000V0D

Page 80

Microbox 2K2 User Guide

//

Page 81

0b00111110 //Character = '['

0b00100000
0b00100000
0b00100000
0b00100000
0b00100000
0b00100000
0b00100000
0b00111110
0b00000000
0b00000000

0b0000000d
0b01000000
0b00100000
0b00010000
0b00001000
0b00000100
0b00000010
0b00000001
0b00000000
0b00000000
0b00000000

0b00111110
0b00000010
0b00000010
0b00000010
0b00000010
0b00000010
0b00000010
0b00000010
0b00111110
0b0000000d
0b00000000

0b00001000
0b00011100
0b00101010
0b01001001
0b00001000
0b00001000
0b00001000
0b00001000
0b00001000
0b0000000d
0b00000000

0b0000000d
0b00000000
0b00000000
0b0000000d
0b00000000
0b00000000
0b0000000d
0b00000000
0b00111110
0b0000000d
0b00000000

//Character =

N

//Character = ']"

//Character =

//Character =

TATY

v

v

Version 0.95 10th May 2023

Microbox 2K2 User Guide Version 0.95 10th May 2023

//
, 0b00011000 //Character = "'
, 0b00011000
, 0b00001000
, 0b00000100
, 0b00000000
, 0b000000V00
, 0b00000000
, 0b00000000
, 0b000000V00
, 0b00000000
, 0b00000000

, 0b00000V0d //Character = 'a'
, 0b00000000
, 0b0000V00d
, 0b00111100
, 0b00000010
, 0b00111110
, 0b01000010
, 0b01000010
, 0b00111101
, 0b00000000
, 0b00000000

, 0b01000000 //Character = 'b'
, 0b01000000
, 0b01000000
, 0b01011100
, 0b01100010
, 0b01000010
, 0b01000010
, 0b01100010
, 0b01011100
, 0b00000000
, 0b000000V0D

, 0b00000V0d //Character = 'c'
, 0b00000000
, 0b0000V000
, 0b00111100
, 0b01000010
, 0b01000000
, 0b01000000
, 0b01000010
, 0b00111100
, 0b00000000
, 0b00000000

, 0b00000010 //Character = 'd'
, 0b00000010
, 0b00000010
, 0b00111010
, 0b01000110
, 0b01000010
, 0b01000010
, 0b01000110
, 0b00111010
, 0b00000000
, 0b000000V0D

Page 82

Microbox 2K2 User Guide Version 0.95 10th May 2023

, 0b00000V0d //Character = 'e'
, 0b00000000
, 0b0000V00d
, 0b00111100
, 0b01000010
, 0b01111110
, 0b01000000
, 0b01000000
, 0b00111100
, 0b00000000
, 0b00000000

, 0b0OO1100 //Character = 'f'
, 0b00010010
, 0b00010000
, 0b00010000
, 0b01111100
, 0b00010000
, 0b00010000
, 0b00010000
, 0b00010000
, 0b000V000?
, 0b0000000?

, 0b00000V0d //Character = 'g'
, 0b00000000
, 0b0000V00d
, 0b00111010
, 0b01000110
, 0b01000010
, 0b01000110
, 0b00111010
, 0b00000010
, 0b01000010
, 0b00111100

, 0b01000000 //Character = 'h'
, 0b01000000
, 0b01000000
, 0b01011100
, 0b01100010
, 0b01000010
, 0b01000010
, 0b01000010
, 0b01000010
, 0b00000000
, 0b000000V0D

, 0b0000VVd //Character = 'i'
, 0b00001000
, 0b000000V0D
, 0b00011000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00011100
, 0b00000000
, 0b00000000

Page 83

Microbox 2K2 User Guide Version 0.95 10th May 2023

, 0b0000VVd //Character = 'j'
, 0b00000010
, 0b00000000
, 0b00000110
, 0b00000010
, 0b00000010
, 0b00000010
, 0b00000010
, 0b00000010
, 0b00100010
, 0b00011100

, 0b01000000 //Character = 'k'
, 0b01000000
, 0b01000000
, 0b01000100
, 0b01001000
, 0b01010000
, 0b01101000
, 0b01000100
, 0b01000010
, 0b00000000
, 0b000000V0D

, 0b00011000 //Character = '1'
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00011100
, 0b00000000
, 0b000000V0D

, 0b00000V0d //Character = 'm'
, 0b00000000
, 0b0000V000
, 0b01110110
, 0b01001001
, 0b01001001
, 0b01001001
, 0b01001001
, 0b01001001
, 0b00000000
, 0b00000000

, 0b00000V0d //Character = 'n'
, 0b00000000
, 0b0000V000
, 0b01011100
, 0b01100010
, 0b01000010
, 0b01000010
, 0b01000010
, 0b01000010
, 0b00000000
, 0b00000000

Page 84

Microbox 2K2 User Guide Version 0.95 10th May 2023

, 0b00000V0d //Character = 'o'
, 0b00000000
, 0b0000V00d
, 0b00111110
, 0b01000001
, 0b01000001
, 0b01000001
, 0b01000001
, 0b00111110
, 0b00000000
, 0b00000000
, 0b00000V0d //Character = 'p'
, 0b00000000
, 0b0000V00d
, 0b01011100
, 001100010
, 0b01000010
, 0b01100010
, 001011100
, 0b01000000
, 0b01000000
, 0b01000000

, 0b00000V0d //Character = 'q’'
, 0b00000000
, 0b0000V00d
, 0b00111010
, 0b01000110
, 0b01000010
, 0b01000110
, 0b00111010
, 0b00000010
, 0b00000010
, 0b00000011

, 0b00000V0d //Character = 'r'
, 0b00000000
, 0b0000V000
, 0b01011100
, 0b01100010
, 0b01000000
, 0b01000000
, 0b01000000
, 0b01000000
, 0b00000000
, 0b00000000

, 0b00000V0d //Character = 's'
, 0b00000000
, 0b0000V000
, 0b00111100
, 0b01000010
, 0b00110000
, 0b00001100
, 0b01000010
, 0b00111100
, 0b00000000
, 0b00000000

Page 85

Microbox 2K2 User Guide Version 0.95 10th May 2023

, 0b00000V0d //Character = "t'
, 0b00010000
, 0b00010000
, 0b01111100
, 0b00010000
, 0b00010000
, 0b00010000
, 0b00010010
, 0b00001100
, 0b00000000
, 0b000000V0D

, 0b0000VV0d //Character = 'u'
, 0b000000V0D
, 0b000000V00
, 0b01000010
, 0b01000010
, 0b01000010
, 0b01000010
, 0b01000110
, 0b00111010
, 0b00000000
, 0b000000V0D

, 0b0000VVd //Character = 'v'
, 0b00000000
, 0b000000V00
, 0b01000001
, 0b01000001
, 0b01000001
, 0b00100010
, 0b00010100
, 0b00001000
, 0b00000000
, 0b00000000

, 0b0000V0d //Character = 'w'
, 0b000000V0D
, 0b000000V0D
, 0b01000001
, 0b01001001
, 0b01001001
, 0b01001001
, 0b01001001
, 0b00110110
, 0b00000000
, 0b000000V0D

, 0b00000V0d //Character = 'x'
, 0b000000V0D
, 0b000000V0D
, 0b01000010
, 0b00100100
, 0b00011000
, 0b00011000
, 0b00100100
, 0b01000010
, 0b00000000
, 0b000000V0D

Page 86

Microbox 2K2 User Guide Version 0.95 10th May 2023

//
, 0b00000V0d //Character = "y'
, 0b000000V0D
, 0b000000V00
, 0b01000010
, 0b01000010
, 0b01000010
, 0b01000110
, 0b00111010
, 0b00000010
, 0b01000010
, 0b00111100

, 0b0000VV0d //Character = 'z’
, 0b000000V0D
, 0b000000V00
, 0b01111110
, 0b00000100
, 0b00001000
, 0b00010000
, 0b00100000
, 0b01111110
, 0b00000000
, 0b000000V0D

, 0b00001100 //Character = '{'
, 0b00010000
, 0b00010000
, 0b00010000
, 0b00100000
, 0b00010000
, 0b00010000
, 0b00010000
, 0b00001100
, 0b00000000
, 0b00000000

, 0b00001000 //Character = '|'
, 0b00001000
, 0b00001000
, 0b00000000
, 0b00001000
, 0b00001000
, 0b00001000
, 0b00000000
, 0b000000V0D
, 0b00000000
, 0b00000000

, 0b00011000 //Character = '}'
, 0b00000100
, 0b00000100
, 0b00000100
, 0b00000010
, 0b00000100
, 0b00000100
, 0b00000100
, 0b00011000
, 0b00000000
, 0b00000000

Page 87

Microbox 2K2 User Guide Version 0.95 10th May 2023

, 0b00110000 //Character = '~'
, 0b01001001
, 0b00000110
, 0b00000000
, 0b00000000
, 0b000000V00
, 0b00000000
, 0b00000000
, 0b000000V00
, 0b00000000
, 0b00000000

, 0b00101010 //Character = 'del'
, 0b01010101
, 0b00101010
, 0b01010101
, 0b00101010
, 0b01010101
, 0b00101010
, 0b01010101
, 0b00101010
, 0b00000000
, 0b000000V0D

, 0b01111111 // Cursor type 1
, 0b01111111
, 0b01111111
, 0b01111111
, 0b01111111
, 0b01111111
, 0b01111111
, 0b01111111
, 0b01111111
, 0b00000000
, 0b00000000

, 0b01100011 // Cursor type 2
, 0b01000001
, 0b01000001
, 0b00000000
, 0b00000000
, 0b0000V000
, 0b01000001
, 0b01000001
, 0b01100011
, 0b00000000
, 0b00000000

1

Page 88

Microbox 2K2 User Guide Version 0.95 10th May 2023

Appendix 6 - MB2KZ2 promdisk contents

The promdisk is part of the Xmos boot image and is loaded into flash
at the same time as the firmware image via the Xmos tools.

By default the promdisk is read only but can be set to read/write with the
'"PDRW' command and write protected again with 'PDRO'. Although the promdisk
can be written to, there is no wear levelling and repeated writes (1,000's)
will eventually 'wear out' the part of the flash image containing the FLEX
SIR and other frequently written sectors.

FLEX binaries

FLEX.COR - FLEX 3.01 binary used by the 'BF' command, replace to
use different versions of FLEX.

ERRORS.SYS

STARTUP.TXT - Gets the time/date and sets TTYSET and ASN parameters
from the battery backed RTC

Standard FLEX utilities
APPEND. CMD
ASN.CMD
BUILD.CMD
CAT.CMD
COPY.CMD
DATE.CMD
DELETE.CMD
ECHO.CMD
EXEC.CMD
I.CMD
JUMP . CMD
LIST.CMD
N.CMD

0.CMD
PROT.CMD
RENAME . CMD
SAVE .CMD
SAVETXT .CMD
TTYSET.CMD
TOUCH.CMD
VERIFY.CMD
VERSION.CMD
XOUT.CMD
Y.CMD

Page 89

Microbox 2K2 User Guide

Additional FLEX utilities
CMPMEM. CMD
CONTIN.CMD
COMPARE . CMD
DATECOPY.CMD
DIR.CMD
DUMP . CMD
FILES.CMD
FIND.CMD
FREE.CMD
HECHO.CMD
MAP . CMD
MEMEND . CMD
PDEL .CMD
RUN.CMD
SPLIT.CMD
ZAP.CMD

FLEX Diagnostic utilities
EXAMINE .CMD

FILETEST.CMD
REBUILD.CMD

UNDELETE.CMD
VALIDATE.CMD

Text editors

Version 0.95 10th May 2023

E.CMD - This is the CEDRIC editor configured for the MB2K2's
PS/2 keyboard layout
STYLO.CMD - Stylograph configured for the MB2K2

STYHLPL1.TXT
STYHLPZ2.TXT
STYHLP3.TXT
STYHLP4.TXT
STYHLP5.TXT
STYHLP6.TXT

TSC 6809 Assembler
ASMB . CMD

Dynamite 6809 Disassembler
DISA.CMD

DISLBL@9.BIN

TSC Debug Package
DEBUG.CMD

Page 90

Microbox 2K2 User Guide

Version 0.95 10th May 2023

Windrush PL/9 compiler

PL9.CMD
PLO_TD.CMD
SETPL9.CMD
HEXGLOBL .DEF
TRUFALSE . DEF
PL9.ERR
BASTRING.LIB
BITIO.LIB
REALCON.LIB
REALIO.LIB
SCIPACK.LIB
SORT.LIB
STRSUBS.LIB
TERMSUBS.LIB
SETPL9.PL9

James McCosh C compiler

CcCc.cMmp
CPREP.CMD
CPASS1.CMD
CPASS2.CMD
COPT.CMD
CASM. CMD
CLOAD.CMD
CLIB.LIB
CSTART.R
CTYPE.H
FLEX.H
SETJMP.H
STDIO.H
HELLO.C

MB2/MB2K2 specific utilities

MONLINK.TXT
FLEXLINK.TXT
ALLOCATE.CMD
TIME.CMD
SETTIME.CMD
GRAPH.CMD
TEXT.CMD
CLEARG.CMD
PRETTY.CMD

FAST.CMD

NORMAL . CMD
SCOPY.CMD

PDRW. CMD
PDRO.CMD
GRAPHICS .MAC
PLAY.CMD
INTERP.CMD
FMTPD.CMD
FMTFD.CMD

Page 91

MONQ9 6809 assembly header file

FLEX 6809 assembly header file

allocate logical disk types to FLEX drive numbers
Time and date from the battery backed RTC

set the time and date in the battery backed RTC
switch display to graphics

switch display to text

clear graphics screen

MB2 terminal emulator with higher resolution
character set

MB2K2 terminal emulator using uPD7220A command
extensions

revert to internal MON@9 terminal emulator

fast track based disk copy (only for disks with
the same format)

enable writes to the promdisk

write protect the promdisk

macro commands to define graphics vector list
playback pre-defined vector list

decode vector list to text

Format PROMdisk

Format F-RAMdisk

Microbox 2K2 User Guide

FLEXNet utilities
RMOUNT . CMD

RDRIVE.CMD
RLIST.CMD
RDIR.CMD
RCD.CMD
RCREATE.CMD
RDELETE.CMD
RESYNC.CMD
REXIT.CMD

ADVENTUR.SYS
STARTREK.CMD
STARTREK. TXT

Page 92

Version 0.95 10th May 2023

mount remote disk image, or show currently mounted
images RMOUNT must be run before using any other
FLEXNet command

show current remote directory

folder list of remote directory

file list of the remote directory

change directory in the remote system

create remote disk image

delete remote disk image

resynchronise the serial link to the remote system
close remote volumes and shut down connection

the MB2 graphics line drawing demo

The classic Adventure game (overwrites FLEX
due to large size)

database for ADV.CMD

A version of the text based Trek game
source code for the above

Version 0.95 10th May 2023

Microbox 2K2 User Guide

Appendix 7 - Schematics

REV | DATE | AUTHOR CHANGE
1 01/01/20 DAR Initial version
1A |127/04/20 DAR Changes from proto build
1B |19/04/23 DAR KiCAD conversion & add 12C FRAM

Sheets

1) Title Sheet
2) Top Level
3) Xmos - 1/0
4) Xmos — Misc

Sheet: /Title Sheet/
e Sheet.kicad_sch

AVED

=

Title: MB2K2
Size: Ak [Date: 2023-04-19 [Rev: V1B
KiCad E.D.A. kicad (6.0.11-0) [1d: #/5

T

Page 93

Version 0.95 10th May 2023

Microbox 2K2 User Guide

1 2 3 I [I 5 6
PS/2 KEYBOARD VGA
veus 1 J— i 634-015-274-992
Q —
c1 2 2 e
= =. — g %%, 2222040
o
b7 mllupsj ¢ 33 g2 F=:ss com 2 83882 FBE35:S
A B aHzH 1|~ oof o BN I I uHuHﬁHQHA o ~ | Sf i) A
fo—¢ ¢—o08
= e
vBUS
FTDI_RXO ww s R [HR2 R4
H FTDLTXO o L9 L
o g
4 FLOPPY DISK
330%] 330F 3308 330F] Lo bis
1 13
e
61300511121 RyP PWR m 2 i
X0 PWR & HIE
¢ 6 e M
t FTDI_RX0 \INDEX INDEX 8 fg 72
FTDI_TXO \DRIVED A\DRIVEQ 10 149 gf 2
8 — 12412 1L 5
5 FIDLRXL , FTDILRXL PELE T 133
- el FTDI_TXL \MOTGR_ON MOTOR_ON 16 146 153
43« w \DIRECTION \DIRECTION 18 |15 171147
J25 RXL \STEP STEP 20 129 1949
llkn_w > \WRITE_DATA WRITE_DATA 22 137 212L
61300511121 upo \WRITE_GATE Mﬁ%o@%am 24 |5, 23f23
UPL \TRACK00 26 126 25|25
\WRITE_PROTECT /thumwaﬂmmamﬂ Mw 28 27 ww
s ——DDONO \READ_DATA " 30 29
|| FTDI" SERIAL PORTS —DDONL \SIDE_SELECT SIDE_SELECT 32 135 31131 L]
*34 134 33|33
702463404
File: Application MCU — 10.kicad_sch
U_Application MCU - 10
c 33 c
usB 5 3
VBUS 1 v VBUS 02
i VBUS | | %
e m“mm T o—L1VIN vout |2 T T 4 fvin_sw sw
2 USB DN
p USBLD_N
R USB_D_P D 2 _{GND VIN_A VO/VFB
GND | o c3 5 . cu .
c7 7 N BYP 202 cs VINH GND
o33 yss T = WUW dlnm 4u7 Thermal_Pad
vee 8 100n SPG20SEM5—L—3.3
H R51 10n ST1S0SIPUR H
100n or Application MCU — Misc v 500mA at 3.3V & o =1
< Application MCU — Misc VOUT = 0.8 x (1 + 4.7/17.8) = 1.011V
AUX3V3 —--> 1V0 ——> /XRST
6 Sheet: /
b [e: MB2K2-vib.kicad_sch b
[[mhe
Fiducial -
File: Title Sheet.kicad_sch | Size: A4 [Date: 2023-04-19 [Rev: V1B
KiCad E.D.A. Kicad (6.0.11-0) [id: 1/5
T Z 3 I L] I 5 I 6

Page 94

Version 0.95 10th May 2023

Microbox 2K2 User Guide

T 2 3 I L 5 I
s 3v3 VBUS
12¢
P10 U3D usc
1/0 TILE 1 1/0 TILE 0 w on
P9 DEBUG_LED 85 [x1000 __4a __ . x0000| 30 PS2.DAT 3k0 >SDA
X100L - 1p __ 1 x0p01f—27 [
scL
A *Laoz womoiomn | - womosso k00023 BOOT FLASH pect
J X1DO3 __ 4a1 BAL 16A1 —- 4AL 8A1 16A1 XODO3 % 5 8 3v3 VBUS
x# X1D04 —— 4Bo BA2 16A2 —— 480 8A2 1642 XO0DO4 a3 B 100 Vee) \Zc.Kicad_sch
D1 x# X1DO5 —- 4B1 8A3 16A3 —— 4B1 8A3 1643 X0DOS 34 s 101 CE_n s LIQG . -
N X’E X1D06 - 4B2 A4 16AL -- 482 8L 1644 XODO6 55 0 102 SCK 4 100n
N X XAD07 - ug3 s 16 -- w3 a5 o5 X0DO7 32 103 GND
XoE{XID08 - a2 aas 1k - w2 e 1045 XODOB 23X
*BEX1009 - owriewr | - wsewrewr X0D09|—0x s
R21 R22
ACAOLED 121 lyipig o i xopiof—28 QSPLCLK
H ACALLED 122 I3ipiq 0 T xoonn ww UWN K R23 R24 s
T —-1E X0D12 H
R18 T T xopis| 63 WG = % FLOPPY DISK
Ko E
R38
x’mw X1D14 —— 4c0 8BO 16A8 -- 4C0 880 1648 XOD14 mw w,ﬁ__um m"»mmw T 10k D 3
X22XIDIS - uca st 1609 - sciee1iean XODISI—22 Finpoe \SOFL_RST 1 READ_DATA
X—22—1X1D16 _- 4p0 BB2 16A10 | -- 400 882 16At0 XOD16[—23—x
D3 23 lxip17 Xop17|69 \TROO PIA_PB4 u7D
/ 25 —- 4D1 BB3 16A11 —-- 4D1 BB3 16A11 70 \WPRT TROO 8 9
X XZE{XIDLE 4og smeseniz | - 402 s tousz X0DA8|—TE s wof 0| i) Sw2 : TRACK00
B X—£—X1D19 __ 43 B85 16A13 -- 403 8BS 16413 X0D19 - SN74TVCO7AD
54 59 DIRC swi c15 u7c
x’mm X1D20 - 4c2 886 16AL4 -- 4C2 BB6 16414 X0D20 51 STER OPTION 1n p s s
X—=2—X1D21 __ 4¢3 8B7 16A15 - 4C3 8B7 16A15 X0D21 225 R26 mmmm <ON\INDEX
64 \RD hor | ox 12C SWITCH y7e SNHLVCO7AD
16 g X0D22
T TTin Xopas| 65 PROMDISK LED Jd] o] 210-4s WPRT | 10 11 WRITE_PROTECT
PROMDISK_LED ~ RAMDISK_LED o T xobas MM me . w erser NTVCO7AD
_ . X0D25
R27 R28 v v 1 6809 RESE STEP 5 N 6 \STEP
330R ko 212 11026 -- 4£0 BCO 1680 4o sco16m0 XOD26| 93 PIAPBA < SN74LVCO7AD L=
L x% X1D27 - E1 BC1 1681 __ue1Bet 1em1 X0D27 NN MNM”WW 61300311121 WD 3N 4 e
R 4 18 1x1028 - 4F0 BC2 1682 - 4roBczieEz X0D28 > \WRITE_DATA
s o5 %415 fy1p2g - 4Ft 8C3 1683 __ 4r1 803 1683 X0D29 |28 PIA_PBL P12
N N %116 fyip30 - 4F2 Bck 1684 __ 4f2 604 1684 X0D30|—22 m?mmw o biRC ugs
N A %217 fy1p31 - 4Fs acs 1685 __ 4Fs 805 1685 X0D31 100 Al 13 12 _D\DIRECTION
%118 |%1p32 - uEe28ce 1685 | __ upy geg 16s5 XODS2 |25 PIAPBE
*219{x1p33 - 4e3 8c7 1587 - ue3ec7 687 X0D33 |2 PIAPEY WG 1IN 2 o
AWRITE_GATE
- —a xoo3a20 o 1p13 L
13 1x1035 __ 4 __a xop3sf91 . o TP14 o usa " »
¢ R3| 100R 15 3 PIX \MOTOR-ON
FTDLRXO 12 xap36 w00 168 - iMoo 1688 XOD36 [—— UBE
FTDLTXOD—————— oo 7 X4037 —- ane01 1689 -- N80t 1689 X037 Vs SIDE 9 8
FTDI_RX1. 2 x1038 10 802 1010 10802 test0 X0DI8|—2 P or T A\SIDE_SELECT
FTDI dﬁolpom X1D39 __ 1p 8D3 16811 —- 1P 8D3 16811 XOD39 L|m
XAEXAD40 - ey a1z | - epwaeptz XOD4OI—S NI usb \DRIVED
XDt o wsaets | - ensaents XODAL I —DNO 3v3 -
0o X042 -- s sei [- eosaemi X0DA2[— o — S oS —DUPO ;
X2 X1D43 - 807 16815 | —- 807 16815 XOD43 522 =="—pup1 use 3
3
L USB IS ON TILE £ XU216-512-Ta128-C20 S -
o> 61300311121
VEUS 3 100n J6 VBUS 3V3
N 3
2
PWR
6809 <~ 4 1
LEDs TSM2302CX SN74LVC125AD SN74LVCO7AD SN74LVCOTAD
12 11 EXPANSION POWER
piapp3 R4 -
<8 ugp Sheet: /U_Application MCU — 10/
0 100K File: Application MCU — 10.kicad_sch
SNTALYC12580 < Title: Application MCU —
Size: Ak [Date: 2023-04-19 [Rev: V1B
KiCad E.D.A. kicad (6.0.11-0) [1d: #/5
1 z 3 [T 5 T

Page 95

Version 0.95 10th May 2023

Microbox 2K2 User Guide

3 [} 3
3v3 A
R10
100K MCP79410-1/5
P11 vee
SCLo————— €L 6 9
SDAG———————SDA_ S Igpp 100n
o3 {vBar vss
o~ Bl Il
8 2
35 N]
Xt
+00p) 32.768kHz _”_
B 11 c12
<[Ks3001 w7 T T w7
k- ¢
RTC/PRAM B
3v3
36
HS?
spa |5__SDA
oL l6sct
c
MBBSRC1MTPNF - G—INEREL
128K FRAM
/U_Application MCU — 10/12C/
: i2c.kicad_sch D
Title: 12C
Size: Al [Date: 2023-04-19 [Rev: V1B
KiCad E.D.A. Kicad (6.0.11-0) [1d: 5/5
3 [| | 6

Page 96

Version 0.95 10th May 2023

XTAG CONNECTOR
o1 UsA

N e x cuk2um 125 [
4 3—x
s UP1D: 6 5 10| 2 |p =
s B MS 127 |1ys L
—
\RsT_ouT -1 NXRST UPOD 10 9 1K 128 l1ck o
12 11—
DNO 14 13 100 1_1mo w
0 e TAG_RST wer 124 per
FLI DNL 18 17— 123 I1RsT N
R 16 v L= 20 19|——x R R46
1n Molex XU216-512-1a128-C20
RESET 70246-2004
use
1v0
I 11
USB_VDD33 VoD S
16
105 Voo 22 23 c24 25 €26
oTP_VCC o o0
voo|24 n
Hm: VDDIOL VDD mw
VDDIOL VDD
19 ol_56
P ol WeRH IR U GRS G S
42_|yppioL 4r7 1000 | 100n | 100n] 100n
PLLAVDD[-203 N4
52_{vpoior o
67 [73 31
VDDIOR = VoD h
28 vbpior vop—80 v
s 83 fyppior o vop|—8L
92_lvooior a vop—8Z
vop |01
. 110 {yppior vpp 202
Rug 111 |yppior Vbl 120
0k USE vpp|-126 33
45 _luse_veus
uss_vop|—42 X2
USB_D_N 47_luse_om o 4 fvoo i
usB_D_P 46 Juse_op A - €32
4 L =
*x—43{yse_ip *x—20{ne -3 100n 2 {enp out
23
4| usB_RTUNE T s T0128-C20 A
RS0 XU216-512-10126-C20 RE! SYS CLOCK
43R
Sheet: /Application MCU — Misc/
le: Application MCU — Misc.kicad_sch
Title: Application MCU — Misc
Size: Al [Date: 2023-04-19 [Rev: V1B
KiCad E.D.A. Kicad (6.0.11-0) [16 #/5
T 2 3 [T 5 T

Microbox 2K2 User Guide

Page 97

Microbox 2K2 User Guide Version 0.95 10th May 2023

Page 98

Microbox 2K2 User Guide Version 0.95 10th May 2023

Appendix 8 - PCB plots

mannnnl
=
= u7
-

Geyll
ot |

sl
N
(=]

- -
IZIR43 =
/XRSTQ) ==

- .
R451 | =m
Lo |

—g
i
O

S
(@)(e)(e)(e) e
<0 OZ
=1000001

I

s[00000
=

o m
NI

LI 355553

a
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)

0 000000000

00

-
x

00 0000000000000 00
0000 0000000000000

® O
<
xx o

-1 D2 m_m ACIAO BOOT. O
cis I o3 m’m ACiAL SELECT O
i ‘!ﬂ! ™ D4 m-m PROMDISK OUTPUT O
C12 C11D5 m°m RAMDISK INPUT O
SW1
CR1216,/20/25 D6 m_m PIA_PBO
D7 m_mM PIA_PB1 R0 ERE FID2
MB2K2 V1B ¥ epen seurce iCim miZl C15 me
D Rumball 2023 [] D8 m_M PIA_PB2 ardware R38m W Sw2

Top view

Page 99

Microbox 2K2 User Guide Version 0.95 10th May 2023

(

-

)

'~

TOP layer

Page 100

Version 0.95 10th May 2023

Microbox 2K2 User Guide

(0000

nuﬁvnu*.nu.,nu.,nuA,
DOOOOOOOOO

o OO o nuAu

;0000

O

00O o

o

0000

OOOO

INNER1 layer (Gnd)

Page 101

Version 0.95 10th May 2023

Microbox 2K2 User Guide

10O o

o

o

0000

0000000000
0000000000

(oo o OO0
OO0O0O00 00000

INNERZ2 layer (Power)

Page 102

Microbox 2K2 User Guide Version 0.95 10th May 2023

D00
OO

it

000000 C

BOO000000

-
—

1

QOOC
OC

I'ﬂ(
LJ

7 000

nrnn
LIt

@r-p#0-ESOS arv SXSEM
Sv 9-JHO-WUA3I 19bnu bsznsdil

BOT layer

Page 103

Version 0.95 10th May 2023

Microbox 2K2 User Guide

00 OO0

| = Reje)
0%y
o [(@)(e;

O 0
O OO0 0O

2254521A-Y11-230429

(®)

N
(24

R14
-
Il
L
I Ri8

I . .
1
IZH R39
IZH R40
|

I R&42

]

Wie;
~
M
(n'4

=
O O
-

(@)
O
(@)
(@)

&
(@) (o)
|
|

R3ZLINILI

C1C2

| H@)
R25 []

DESIGN FILES

M
i -nurhr»rh.l

R261

m\0
] |g
|

| e
210
Zio

R231
R211
R221

oj(e)(e)

OO0 0000000000000 00
0000000000000 O000Nn

< B BN ~i
xll 1l | la | la
..

£y

Bottom view

Page 104

Microbox 2K2 User Guide

Version 0.95 10th May 2023

Appendix 9 - Assembly drawings
14)2 | | Ji‘ ‘
° 0m000000
FID1 O O 0000000
e ./ om@moo O VG O
Do O o o @VS mlllllll-- J3
ae [+ PS/2@Hs Dk
<a CIKO@ODATA LT
GND VBUS®@ 3 it 2 = © us gl 00
=N O SCL -I]: _ U7 ol OO
C3"-|:| IIC4I 101 SDA B == 00
Ri3 Re IiRes=| = D
py CML ca c5 i1 B 6o /XRST@ m| |m pig OO
gl ! iU - R4SI| wa| |=m 1| OO
C32 . ' : o -0 - - O O
o go [ol TP S T 3 R15021 1Z1
o TS II I@lVO-l i Rl © O
rxol © O : R5 1=NR46 L ICHR47 ©@X0D35 00
0l©| o | lI I U3
X2 @ bt |1 CETTTTCETVTCERRRITCERN = © X0D34 ol 00
(O] ol oo 24MHz =[® = D1l'l oxwid| 0@
©o = = ©X1D00 00
— -3 = = e
=0 00 fv 3% = . = Lt 00
oo | = E @ us
> > = = = 00
o 00 |X 3V3 = = = |=
RX1 © = = = = 00
ol© 8 8 M = |= 00
0% we o JI 20003 =LI= | o0
© | 2o +3v3[@ | ©8
L0 e R7L] i J6
e WL I
R12I 5 +5V0
- D2 m_m ACIAO BOOT- © (o)
CIZTsl D o3 m'm ACAL SELECT O © = = B2
i ™ D4 m m PROMDISK OUTPUT O o =
m X1 m B -] +
Cc12 C11D5 m_m RAMDISK INPUT O o - :
J Wi RS
CR1216/20/25 E e z:A'::Z: -n 6809 RESET
MB2K2 V1B D7 MM PAPEY b 11 mECE Ci5 o2
D Rumball 2023 || D8 m_m PIA_PB2 Rardware R38m o SW2

Page 105

Microbox 2K2 User Guide

Version 0.95 10th May 2023

Page 106

00000000 [
0000000 £
O IRZS:IZI iy E§
R36 1 R56 =
U P
C34
00
00 Hg
500 o
2.2- 00
I‘lOO
200
00
00 o
00 °
00 °
(o)o) ©
00 R37
'51'8 8 S E €13
(0 No)
00
aoo 0]
(@)
OR23I:IO (o)
R211C10 (o)
R221Z10 o
(o) O Rr2sIZHO (o]
[]

o

o
o
o

o0 Oo0
mm 00 00g,
--e R9u0
c1c2

o o

O =0

R2601-1 O

o

ogil
c7

R30
|

|
C261 1
|

C30
il

ool
coooon

I Ryy
1

[
R32

[|
C23 c29

DESIGN FILES

o |
C10

R17
R18
R27
R28

R39
R40
R42

R10

olZl

1_1C9

0000000000
o o
cooon

0000000O0OO0OMO

()
(&)
o

E
O &

Microbox 2K2 User Guide

Appendix 10 - 3D renderings

Page 107

CLK@ @DATA
. 1.

,,'\—|
g
0 . =

o
[+ 4
&
R13 RS
c5 1 | JOND /xRST®

- -

(e}
(8]

T I@LVo
RS R46 ,
US i

R15] :
R16
©Xx0D35

©x0D34

"
D1mms @X1D01 O
_¥O) a

BOOT. (
SELECT ¢
OUTPUT ¢

INPUT ¢

“ Swi
6809 RESET
e - FID2
epen seurce] C15 1
R38 SW2 =

ACIAO
ACIAL
PROMDISK
RAMDISK

PIA_PBO
PIA_PB1
PIA_PB2

CR1216,/20/25
MB2K2 V1B

D Rumball 2023

ardware

Version 0.95 10th May 2023

Microbox 2K2 User Guide

oJojolo] ofo)

DOOO0O0O

RS54
R36

} (

N
O O (
® (@ ®

O (
) l:¢ (

) O O

)

) O (
) C
2
[
~

DO C
DO C

) (

ac
@NOX
@) @) 0

Page 108

)
[T'e}
[+ 4
|
10 R56

C34

2023-04-19

00 Oo R14

c26 | C27

(o4:}
Cc30 i

C25

C23 c29

DESIGN FILES

jer CERN=OHL-P v2

Version 0.95 10th May 2023

R32
6|

,Vl\il‘)

Microbox 2K2 User Guide Version 0.95 10th May 2023

Appendix 11 - BOM

MB2K2-vib BOM

Item | Qty | Reference(s) | Value Footprint Manufacturer | Manufacturer PN Description
1|1 Bm KS3001 CR1216 through hole Keystone 3001 Battery Holder: THM, 1 Goin Gell, 12mm, PhosBronze/Tin-Nickel
2 (3 |cn03.05 a7 C0805 Generic
3 |24 [C2,07,09, 1000 Co80s Generic

C10,C13,G14,

C17,C18,G19,

C20,C21,G22,

C23, C24, G25,

C26, G217, G28,

C29,G30, C32,

C33, G34, C36
4 (1 o 202 C0805 Generic
5 |1 |cs 220 C0805 Generic
6 |1 |cs 100 Co805 Generic
7 |2 |cion 4p7 o805 Generic
8 |2 [c15016 n 0805 Generic
9 |1 cat u C0805 Generic
10 |1 |c3s 100p Co805 Generic
1 |1 oM 70246-2004 20 pin box HDR, 2 row, 2.54mm pitch | Molex 70246-2004 Gonn Shrouded Header (4 Sides) HDR 20 POS 2.54mm Solder ST Thru-Hole
2 |1 ot WH LED080S Generic
13 |3 |D204,06 R LED080S Generic
14 |3 D3,D5D7 G LEDO080S Generic
5 |1 D8 B LED080S Generic
6 |1 D9 PRTRSVOU2X.215 SOT-1438 Nexperia PRTRSVOU2X,215 Uttra low capacitance double rail-to-rail ESD protection diode
17 |1 |pio DSS14U SOD-123F Nexperia PMEG4010EH 115 Diode Schottky 50V, 1A
8 |1 o 634-015-274-992 D-Sub, 15pin, 1.52mm pitch, RA EDAC iature SKT 15 POS 1.5: Ider RA Thru-Hole 15 Terminal
19 1 w2 5749180-1 Mini DIN Connector, 6pin TE 5749180-1 DIN Gonnector, 6 Contact(s), Female, Board Mount, Solder Terminal
20 [1 |8 70246-3404 34 pin box HDR, 2 row, 2.54mm pitch | Molex 70246-3404 Conn Shrouded Header (4 Sides) HDR 34 POS 2.54mm Solder ST Top Entry Thru-Hole
21 |1 |u USB Type B USB Type B Multicomp. USB-8-S-RA USB Connector, 4 Contact(s), Female, Right Angle, Solder Terminal, Locking
2 (2 |J506 61300311121 3 pin HDR, 2.54mm pitch Warth Elektronik | 61300311121 THT Vertical Pin Header WR-PHD, Pitch 2.54 mm, Single Row, 3 pins
23 (1 U 20 Ind 3.8x3.8 Vishay Dale IFSC1515AHER2R2MO1 | Inductor Power Shielded Wirewound 2.2uH 20% 100KHz 2.8A 0.0450hm DCR 1515 T/R
24 |1 |Ls1 3V buzzer 12mm dia, 9mm pitch oMl CMI-12951G-0385T | Audio Buzzer Magnetic 2VDC 5VDC 30mA 3VDC 8508 2300Hz to 2500Hz Through Hole
25 |2 |PiP2 61300511121 5 pin HDR, 2.54mm pitch Warth Elektronik | 61300511121 THT Vertical Pin Header WR-PHD, Pitch 2.54 mm, Single Row, 5 pins
26 |9 |R1,R2,R3,R4, |330R R0805 Generic

R17, R27, R3S,

R36, R39
27 |5 |Rs,R9,R14, |47 RO805 Generic

R40, R42
28 (1 |Re 17K8 R0805 Generic
2 (1 |R7 3K0 R0805 Generic
30 (16 |Re.RI3,RI5 10K RO805 Generic

R16, R19, R21,

R22, R23, R24,

R25, R26, R38,

R43, Rad, RS,
31 (2 |R10,R41 100K R0805 Generic
82 (5 |R1,R12R18 |1KO R0805 Generic

0, R28.

34 (6 |R29,R31,R33, 3R RO805 Generic

R4, RSB, RS9
35 |3 |RSO,R32,R34 | 100R R0805 Generic
36 (6 |R37,R46,RS5, |OR R0805 Generic

RS6, RS7
a7 |1 R 4R7 RO805 Generic
38 |1 |Rso 43R R0805 Generic
8 (1 |swi 210-4MS 8pin DIP cTs 210-aMS Switch DIP ON OFF SPST 4 Raised Slide 0.1A 20VDG 2.54mm Thru-Hole
3 (1 [sw2 TL1014AF2200G TL1014AF2200G E-Switch TL1014AF2200G Switch Tactile N.0. SPST Rectangular Button Gull Wing 0.05A 12VDG 1.57N SMD
40 (3 | TRI,TR2,TR3 | TSM2302CX sotzs Taiwan TSM2302CX “Transistor MOSFET N-CH 20V 3.9A 3-Pin SOT-23 Plastic T/R

Semiconductors
M (1 n SPE20SEMS-L-3.3 SOT23 5 Exar SPE20SEMS-L-3-3/TR | SP6205 Series 3.3 V 500 mA SMT Low Noise GMOS LDO Regulator - SOT-23-5
a2 (1 |u ST1S09IPUR DFN6D_N STMicroelectronic | STIS09IPUR Switching Regulator, Gurrent-mode, 1.5A, 1800kHz Switching Freq-Max
s

8 (1w XU216-512-TQ128-C20 TQFP128_XMOS XMOS XU216-512-TQ128-C20 | XCore XU Microcontroller IC 32-Bit 16-Core 2000MIPS ROMless 128-TQFP (14x14)
44 (1w 15251 P032D-INLE SOIC-8N Iss! 15251 P032D-NLE NOR Flash Serial (SPI, Dual SPI, Quad SPI) 2.5V/3/3.3V 32M-bit 4M x 8 8ns 8-Pin SOIC N
4 (1 |us TLVB40MADLO8DBVR SOT23.5 m TLVB40MADLOBDBVR | Low-voltage supervisor with adjustable-reset time delay and manual reset 5-SOT-23 -40 to 125
4 |1 |us MCP79410-/SN SOIC-8N Microchip MCP79410-/SN Real Time Clock yte Clock/ Backup Automotive 8-Pin SOIC N
a1 |2 |ur.us SN74LVCO7AD SOIC-14N Texas Instruments | SN74LVCO7AD Non Inverting Buffer, GMOS SOIG-14
48 (1 U SN74LVG125AD SOIC-14N Texas Instruments | SN74LVG125AD Buffer/Line Driver 4-CH Non-Inverting 3-ST GMOS SOIG-14
4 (1 |ul0 MBBSRGTMTPNF-G-JNERE1 | SOIC-8 Fujitsu 1Mbit FRAM with I2C serial interface, 1.8V, 3V
s (1 |x1 FC-135 32.7680KA-A XTAL_3215 Epson Toyocom | FC-135 32.7680KA-A | Mini SMD XtI Khz +/-20PPM, -40~85C 9PF
51 (1 |x ASE-24.000MHZ-LG-T ‘SMD 3.2mm x 2.5mm Abracon LLG | ASE-24.000MHZ-LG-T | Oscillator 24MHz +50ppm 15pF CMOS 55% 2.5V 4-Pin SMD

Page 109

Microbox 2K2 User Guide Version 0.95 10th May 2023

Page 110

